
- ...

Customer Satisfaction
If you discover physical defects in the manuals distributed with an Apple product or in the media on
which a software product is distributed, Apple will replace the documentation or media at no
charge to you during the 90-day period after you purchased the product.

In addition, if Apple releases a corrective update to a software product during the 90-day period
after you purchased the software, Apple will replace the applicable diskettes and documentation
with the revised version at no charge to you during the six months after the date of purchase.

In some countries the replacement period may be different; check with your authorized Apple
dealer. Return any item to be replaced with proof of purchase to Apple or an authorized Apple
dealer.

Limitation on Warranties and Liability
Even though Apple has tested the software described in this manual and reviewed its contents,
neither Apple nor its software suppliers make any warranty or representation, either express or
implied, with respect to this manual or to the software described in this manual, their quality,
performance, merchantability, or fitness for any particular purpose. As a result, this software and
manual are sold “as is”, and you the purchaser are assuming the entire risk as to their quality and
performance. In no event will Apple or its software suppliers be liable for direct, indirect, incidental,
or consequential damages resulting from any defect in the software or manual, even if they have
been advised of the possibility of such damages. In particular, they shall have no liability for any
programs or data stored in or used with Apple products, including the costs of recovering or
reproducing these programs or data. Some states do not allow the exclusion or limitation of implied
warranties or liability for incidental or consequential damages, so the above limitation or exclusion
may not apply to you.

Copyright
This manual and the software (computer programs) described in it are copyrighted by Apple or by
Apple’s software suppliers, with all rights reserved. Under the copyright laws, this manual or the
programs may not be copied, in whole or part, without the written consent of Apple, except in the
normal use of the software or to make a backup copy. This exception does not allow copies to be
made for others, whether or not sold, but all of the material purchased (with all backup copies) may
be sold, given or loaned to another person. Under the law, copying includes translating into
another language.

You may use the software on any computer owned by you but extra copies cannot be made for this
purpose. For some products, a multi-use license may be purchased to allow the software to be
used on more than one computer owned by the purchaser, including a shared-disk system.
(Contact your authorized Apple dealer for information on multi-use licenses.)

Product Revisions
Apple cannot guarantee that you will receive notice of a revision to the software described in this
manual, even if you have returned a registration card received with the product. You should
periodically check with your authorized Apple Dealer.
© Apple Computer, Inc. 1982

20525 Mariani Avenue
Cupertino, California 95014

Apple and the Apple logo are registered trademarks of Apple Computer, Inc.
Simultaneously published in the U.S.A and Canada.
Reorder Apple Product #A3L0027-A

!

|

xXkKkXSSSS:^^:X'K\X«\XX\X¥X' -X-.' Xs'iX'XX<"X xXXX¥Xx4xXSS\XxxX¥S¥XXX' '^'"X'x SSSSS •. SX"'- x-x SSSSS <X" x¥''sXsX¥-¥:xx"''X'" ® scs SSXSS:

I

I
X S S § X 8 «

x-xxx-x-:x:X:::Xx---x:-xxxx<xx:>x-x-x-:xx:X:<<x:xx :.:....:.:.:.;xS:x;x^ x:-x-::xxx-xx-x-x< :-.-x?x:
| | 1 | f I

SSSSSS'JSXxx 'x - <• -. S x - -XxXX:8SSK8Ssj|sS

XvXSS:$^v¥<«<x^

§

I
x-xj":":-

* '■S'-sS s'

SS^XXXXXXXXXXXXXXXXXXX'X'XXXXX'^XXSSSSSSSS^^ ■ ' s' :-.."XXXX-Xs'X^X'

X^¥XS¥X<¥Sx-:-SSSx.SSSX¥X \ ' s' 'X x

Lssssssssssss;' 'S '• -: .>xs:sxs'xs^;->xxxxxxxxxxxx^x : x >x-:XX :< : x-x-—•: XxXX -x<

I
|

I

«8SSSSSSSSSi

,.<. C ■.\X,\-,'-. ,'x , S' V.'X'V'XX'X-X-X' .ssXs- • ' X'

I I
is

<XXX<S:<X'^X<X'XX<XX''Xs's«X'X.sX'^X^Xs'XXX'5 t\x'Xs X'XX'ssX' XXXXXXXXXXXXX-XXsXx^XXs'XXXssX'XX'XXXXXXXXXX'JXXXX'X'XXsXX^IvxXX X-Sx-x-x-x->x-X'>:-:-S:-:s'<SWSSt

§I

Apple III

SOS Reference Manual

Volume 2: The SOS Calls

" .Ssxx-w-:

S-XxS<X<SSXX<XxSXX.S;SS&X'XXXx'X":S:XX.;'XXSXXXX''Xx'X'XXx|xsXXXXX'X'XX'X'"X'X.X^^^

'X-X X'"X -St s's'ss ' "s'X<S^''XsXSXX"'s'XXss<s""' X'Xj^sXssX Xs'Xss's -Xs-X" ' XX'X-X-X-. X'^Xss sSXsXX' ..,'X:^"Xs'X'X s' -NS "§Xs' ss sssXs 'X's ssX 'Xss s-X'X "X <$" ‘■■X'Xs- s <■ Xs X-.'XXXXs-X"X "xX-XXX' s<Xs' X"'XX<5-.' sX<XXXXX^X§S8X^ X^XX'-iX X^X'»X:X'\X^'s'^X .,-X'XXs^^^ XrXS-X-XX^''XXX's-.'XXs'NsXX'X':X'

S-X->XX'X'XX'XX'ss X ' s" <■ s

... § S
' s ' ' ' X ' ' "'X ""sX '

i

' s ' s ' ' ' XX-XXXXXXXXx'N

I I I J

I I

<SS^8S«^XX®:X«xXXXXXX sXXXXXXXXXXXXss'xXXXX-^x XXXXXXX'sXXxXsxsXXXX ' s' "s s ss ' 'X- ' si sXSs^sj^WS

■ : M

Illi L_J
S 8 8 8 £ S

:-»:.x.x.x.»k.:*:<.x.>x.:.:.:xx.:.&:xxx.:s.::.:w^^
s $ t § 5

' ss'." . . . ' ' '$' "'XssXsss sX'

XX\'XX\XXX'X'XXX«<^XX\\<$^X'X<XXXSXXXXXXX'XX'X'XvXXX:X'XX^ I I I I I I5- S Ss X S 8 S x- 8 :S ¥ S

XX<X'SS;¥SS v^\xX'<X<X'XX'SSX'SSXKSx¥X''XXXXX'X'Xx|xX'X'XXXXXXs'XXXX'sX'X''' xXxXX' X ' "X'XXXXX'xXXXXXXXXXX'X'XXX sxX¥xXSx¥SSSSS^-¥XXX'XX-¥SSX'X'SXSX''NSSS;¥'SS'X'ssX\'^XSX'XXSXS.'J'SN'X<<S'XXxv.'X'X.XXX'S^^SXX'.XX<' sXXXX'xSXX' XX'XXXXXX'SXX'

<Sx<xxxxXSS'X:<SS¥SSSSS.X'S:>^SSs\-WSSS:¥SSS;S'X:>X-KX'\x<SSS::x¥^XX<Sx'X''X>'X'X's'X'X<''XXXX >X'XX^^^ X'\«S^¥S"'XXX<. xx- s ¥Xxxxxxx<XX' '•.'■¥xxx<' S'''Xis5¥:CS¥SxXx xx ' • x'

I 1 I I I I I i i Illi
I I 1 I I I I I I § I I I I

sSstt&ssssttss

J:'xxxx>xxxxxx<xxx'xxx'xxxxx^x.:.xx'xx<s'x>xx'xxxxx'xxxx''x':.xx'x^x<sx''xx'xxsxxx^xxxx'sxxxxxxx4xx¥^x'xsx'f.'x-xxx

¥S^¥S¥SS$SSSS8X'8S:X'^^'8i8S>8SS^^X'¥X\'8xXX'XXXX\\XXxXXXXXXXXXXXXX'^XXXXXX<'XXXX<\XXXX'>XXXXXXXXXXXXXXX'S^'XXXX'X'XXXXX\^

I I I I i

“1 I I I i IX..s-...'".ssssss"' <x X ' S' sx's " X'XsX s' s' ' X s' " X'X'X S ' X's^. " X '' X'<- X s' <• C S X s' s ' '•>I I I I I I

' s • • '" X s ' • ■■ ' '

I I I 1 1

>X'XXX'SX'XXX'X'XX'X''X\'X¥X<<<.X<.S^XX:-XX'"XXX'X¥S:<

>XX'XXXXXXXsXXXXXsXsXXXxXX^¥'«XXXxXXX'S8¥.X<'XXXXXXXXXXXXXXXX\X'^X'>XXXXXXXXXXXXsXXXXXXXXXXXXXX'XXXX'X^¥XX'XXX'XXXX<XXxXXX'X¥XsXXXXxXX?;'8^8¥XW»<Sx'^

i i I

^:<:."sxx'x'xxxx'>x.xxsxx<sxx¥sxxssa^ssss^sss&:s:s^^

>x<^.X'>xx'>xXSsXsX-SxXxX<xXXSXXXX<:¥SSSS^SSS¥S<X<<SX<X¥SSX<SSSSS:?®8SsX.¥S^^XX'XX'S.xX\X''>xxxsXXXXXXXxxxx'XXxX^xx'Xxxx'8<'XXXXXXxXXXxx'x'M.S:4¥>^^

S^XX'X^S»SXS«<<WXXXX^X'XX<<<<x'^XX<<WSW>X'XxSXXS'X'SX'XXXsX'X<<<^:'X¥:S'XSXXxXXXXSXX¥:S<X¥SXX'\<S.Xs<S^XX¥x'¥XS:S;¥.'XXS<SX'».'KS¥K¥NS<<J

■'.. .XJWX'XWWS^S
I I &

' | ' X<-XXXXxXXXX^X<

X'Ssxxxx-x

Acknowledgements
Knuth, Fundamental Algorithms: The Art of Computer Programming, Vol. I, 2/e.® 1981.
Reproduction of book cover. Reprinted with permission.

Writer: Don Reed

Contributions and assistance: Bob Etheredge, Tom Root, Bob Martin, Dick Huston, Steve
Smith, Dirk van Nouhuys, Ralph Bean, Jeff Aronoff, Bryan Stearns, Russ Daniels, Lynn
Marsh, and Dorothy Pearson

y/zzzzszzzzzzz4'zz.»^z^^zzz/?^^^^

itfS/Ar/SSS^

n

• ■ ■
IIIContents

Contents

WS/SS/W^^^^

Vb/ume 2: The SOS Calls

Figures and Tables vii

Preface ix

9 File Calls and Errors_________

2 9.1 File Calls
3 9.1.1 CREATE
7 9.1.2 DESTROY
9 9.1.3 RENAME

11 9.1.4 SET_FILE_INFO
17 9.1.5 GET_FILE_INFO
23 9.1.6 VOLUME
25 9.1.7 SET_PREFIX
27 9.1.8 GET_PREFIX
29 9.1.9 OPEN
33 9.1.10 NEWLINE
35 9.1.11 READ
37 9.1.12 WRITE
39 9.1.13 CLOSE
41 9.1.14 FLUSH
43 9.1.15 SET_MARK
45 9.1.16 GET_MARK
47 9.1.17 SET_EOF
49 9.1.18 GET_EOF
51 9.1.19 SET_LEVEL
53 9.1.20 GET_LEVEL
53 9.2 File Calls Errors

iv SOS Reference Manual

10 Dev^ce Calls and Errors 57

58 10.1 Device Calls
59 10.1.1 D_STATUS
63 10.1.2 D_CONTROL
65 10.1.3 GET_DEV_NUM
67 10.1.4 D_INFO
71 10.2 Device Calls Errors

11 Memory Calls and Errors 73
■UQKKi ~ ~

74
75
77
81
83
85
87
88

11.1 Memory Calls
11.1.1 REQUEST_SEG
11.1.2 FIND_SEG
11.1.3 CHANGE_SEG
11.1.4 GET_SEG_INFO
11.1.5 SET_SEG_NUM
11.1.6 RELEASE_SEG

11.2 Memory Call Errors

12 Utility Calls and Errors &

90
91
93
95
97
99

103
104

12.1

12.2

Utility Calls
12.1.1 SET_FENCE
12.1.2 GET_FENCE
12.1.3 SET_TIME
12.1.4 GET_TIME
12.1.5 GET_ANALOG
12.1.6 TERMINATE
Utility Call Errors

SOS Specifications 105

106 Version
106 Classification
106 CPU Architecture
106 System Calls
106 File Management System
107 Device Management System
108 Memory/Buffer Management Systems
108 Additional System Functions
109 I nterrupt Management System
109 Event Management System
109 System Configuration
109 Standard Device Drivers

ExerSOS 113

114 B.1 Using ExerSOS
114 B.1.1 Choosing Calls and Other Functions
116 B.1.2 Input Parameters
117 B.2 The Data Buffer
117 B.2.1 Editing the Data Buffer
118 B.3 The String Buffer
119 B.4 Leaving ExerSOS

Makelnterp 121

Error Messages 123

124 D.1 Non-Fatal SOS Errors
124 D.1.1 General SOS Errors
125 D.1.2 Device Call Errors
125 D.1.3 File Call Errors
126 D.1.4 Utility Call Errors
126 D.1.5 Memory Call Errors
126 D.2 Fatal SOS Errors
128 D.3 Bootstrap Errors

vi SOS Reference Manual

£ Data Formats of Assembly-Language
Code Files 131

132 E.1 Code File Organization
134 E.2 The Segment Dictionary
135 E.3 The Code Part of a Code File
136 E.3.1 The Procedure Dictionary
136 E.3.2 Procedures
136 E.3.3 Assembly-Language Procedure Attribute Tables
138 E.3.4 Relocation Tables
138 E.3.4.1 Base-Relative Relocation Table
139 E.3.4.2 Segment-Relative Relocation Table
139 E.3.4.3 Procedure-Relative Relocation Table
139 E.3.4.4 Interpreter-Relative Relocation Table

Bibliography 141

Index 143

VII

Figures and Tables

Figures and Tables

Volume 2: The SOS Calls

Preface&

x Figure 0-1 Parts of the SOS Call
xi Figure 0-2 TERMINATE Call Block

10 Device Calls and Errors 57

60
60
61
64
64

Figure 10-1 Block Device Status Request $00
Figure 10-2 Character Device Status Request $01
Figure 10-3 Character Device Status Request $02
Figure 10-4 Character Device Control Code $01
Figure 10-5 Character Device Control Code $02

Data Formats of Assembly-Language
Code Files w

133 Figure E-1 An Assembly-Language Code File
134 Figure E-2 A Segment Dictionary
135 Figure E-3 The Code Part of a Code File
137 Figure E-4 An Assembly-Language Procedure

Attribute Table

SOS Reference Manual

■
■

n
■
n
n
H
II
n
H
■
■
n
n
"i
H

Volume 2: The SOS Calls comprises the remaining chapters and the
appendixes of this manual. The chapter numbers continue the sequence
of those in Volume 1.

Volume 2 defines the individual SOS calls. Chapter 9 contains a
description of each file call; Chapter 10, each device call; Chapter 11, each
memory call; and Chapter 12, each utility call. Each of these chapters is
divided into two sections: calls, and errors.

The calls defined in each chapter are arranged in numerical order by call
number (for example, CREATE is $C0). Each call description contains the
following information:

• Definition of the call
• Required parameters
• Optional parameters
• Comments
• Errors

The parameter fields are of four types:

• Pointer (2 bytes): The location of a table or parameter list.
• Value (1,2, or 4 bytes): A parameter passed by the caller to SOS.
• Result (1,2, or 4 bytes): A parameter returned by SOS to

the caller.
• Value/result (1,2, or 4 bytes): A parameter passed to SOS and

back to the caller, possibly changed.
• Unused (any length): Occurs when the same parameter list is

used by two calls, one of which ignores some parameters in the
list. An unused field can be of any length.

X SOS Reference Manual

Each SOS call has three parts, described in Chapter 8 of Volume 1

• The call block

• The required parameter list

• The optional parameter list

They can be diagrammed as shown in Figure 0-1:

Figure 0-1. Parts of the SOS Call

Each call description is accompanied by a diagram like that shown in
Figure 0-1. Most of the diagrams omit the call block, as these are identical,
except for the call_num , and show only the required and optional
parameter lists. In addition, the parm_count (shown in the diagram) is
omitted from the required parameter list.

The one exception to this pattern is TERMINATE, for which the call block
only is shown, as in Figure 0-2, because it differs from the standard form.
See section 12.1.6 for details.

Figure 0-2. TERMINATE Call Block

SOi

- -t:

SOS Reference ManualXII

File Calls and Errors

9

File Calls and Errors

XXXXX^xxXsXXXXXXX<^xXXXX«$|^^SSS$X^SX-‘Xi^X<S$>>SSX^

1
I

1 I i 1XXSX«XXXx^.\\Wx^S>X>x\\X\\XXxX<X«XX.XX.X-;^^^

x^x\\X<XS<;XsXX<x\<xX^XX\XxXX^xxxx:|^^ X x xxx xxxxxxx^ .xxxxxxxxxxxxxxx'xXXX^^xxxXsXxXxXxxWx^

§ S & s s s

:■: s x 3 ® «
XXNXxXXXXX^X^XX\X^XXX\XXXX^\XXXXXXXXXXXv\\XXX\XXXXXXXXXXXXXvXXXX^>X\XXXXXXX<sXXXXXXXX\XXX<<^^^^^

I I I I I I‘I I ! I I§ § i s §

I t 1 i I I 1 I
8S88^l818aSSS8ft®S8ftSI8^ xx x xxx x Xj^S :^<<<xXX.XX->X®W:x^^XXXXSSXwXXSXWXXXXXXX^S^

xx.x^x-x-xyw^xsxXsXXXXxxXsXXXWj.XX^X^x^^

2 9.1 File Calls
3 9.1.1 CREATE
7 9.1.2 DESTROY
9 9.1.3 RENAME

11 9.1.4 SET_FILE_INFO
17 9.1.5 GET_FILE_INFO
23 9.1.6 VOLUME
25 9.1.7 SET_PREFIX
27 9.1.8 GET_PREFIX
29 9.1.9 OPEN
33 9.1.10 NEWLINE
35 9.1.11 READ
37 9.1.12 WRITE
39 9.1.13 CLOSE
41 9.1.14 FLUSH
43 9.1.15 SET_MARK
45 9.1.16 GET_MARK
47 9.1.17 SET_EOF
49 9.1.18 GET_EOF
51 9.1.19 SET_LEVEL
53 9.1.20 GET_LEVEL
53 9.2 File Calls Errors

2 SOS Reference Manual

9.1 File Calls

This section contains descriptions of all calls that operate on files. These
calls operate on closed files and refer to a file by its pathname.

$C0:
$C1:
$C2:
$C3:
$C4:
$C5:
$C6:
$C7:
$C8:

CREATE
DESTROY
RENAME
SET_FILE_INFO
GET_FILE_INFO
VOLUME
SET_PREFIX
GET_PREFIX
OPEN

These calls operate on access paths to open files and refer to the access
path by its ref_num, returned by the OPEN call.

$C9: NEWLINE
$CA: READ
$CB: WRITE
$CC: CLOSE
$CD: FLUSH
$CE: SET_MARK
$CF: GET_MARK
$D0: SET_EOF
$D1: GET_EOF
$D2: SET_LEVEL
$D3: GET LEVEL

File Calls and Errors 3

n
H
■
■

n
n
H
■

■
■
n
H
■
■

■
■
II
II

9.1.1 CREATE File Call $C0

This call creates a standard file or
subdirectory file on a volume mounted
on a block device. A directory 0
entry is established, and at least one
block is allocated on the volume.

2
This call cannot create a volume directory
or a character file. Volume directories 3

are "created” by the formatting
utility on the Apple III Utilities disk. 4

Character files are "created" by the
System Configuration Program. 5

Required Parameter List

pathname: pointer 1

This parameter is a pointer to a
string in memory containing the
pathname of the file to be created:
the first byte of the string contains
the number of bytes in the .
pathname; the remaining bytes
contain the pathname itself. The 5
last name in the pathname should
be that of a file that does not 6
currently exist in the specified
directory, or a DUPERR will result. 7

option list: pointer

This is a pointer to the optional parameter list if length (below) is between
1 and 8; otherwise it is ignored.

CREATE $C0

$03

pathname
pointer

optionlist
pointer

length
value

filetype
value

auxtype
value

storagejype
value

EOF
value

length: 1 byte value
Range: $0..$08

This is the length in bytes of the optional parameter list. It specifies which
optional parameters are supplied.

4 SOS Reference Manual

The values below tell the number of bytes in a list with complete
parameters. If SOS receives an intermediate value, it does not take half
a parameter, but reduces the length to the next defined value.

0 = no optional parameters
1 = filetype
3 = filejype through auxtype
4 = filejype through storjype
8 = filejype through EOF

Optional Parameter List

file_type: 1 byte value
Range: $00..$FF
Default: $00

This is the type identifier for this file. The filejype does not affect the
way in which SOS deals with the file: it is used only by interpreters to
determine the internal arrangement and meaning of the bytes in the file.
These values of file type are now defined:

$00 = Typeless file (BASIC or Pascal "unknown" file)
$01 = File containing all bad blocks on the volume
$02 - Pascal or assembly-language code file
$03 = Pascal text file
$04 = BASIC text file; Pascal ASCI I file
$05 = Pascal data file
$06 = General binary file
$07 = Font file
$08 = Screen image file
$09 = Business BASIC program file
$0A - Business BASIC data file
$0B = Word Processor file
$0C = SOS system file (DRIVER, INTERP, KERNEL)
$0D, $0E = SOS reserved
$0F = Directory file (see storage_type)
$10..$DF = SOS reserved
$E0..$FF = ProDOS reserved

3

auxtype: 2 byte value
Range: $00..$FFFF
Default: $0000

This is the auxiliary file identifier. It is used by interpreters to store any
additional information about the file. BASIC, for example, uses this field
to store the record size of its data files. If the file is a volume directory
(storage type is $0F), these bytes contain the total number of blocks on
the volume.

storagejype: 1 byte value
Range: $01..$0D
Default: $01

This indicates whether the file is to be a standard file ($01) or a
subdirectory file ($0D). All other values are illegal and will result in a
TYPERR.

File Calls and Errors 5

EOF: 4 byte value
Range: $00000000..$00FFFFFF
Default: $00000000

This specifies the amount of space to preallocate for the file.One data
block is automatically allocated regardless of the value of EOF; additional
data blocks are allocated until the number of bytes in the allocated data
blocks equals or exceeds EOF. In addition to the data blocks, index blocks
are allocated as necessary.

The maximum creation size for standard files is $00FFFFFF, or $8000
blocks. The maximum creation size for subdirectories is $0000FFFF, or
$80 blocks. The total number of blocks occupied by a file is the number of
data blocks plus the number of index blocks: see Chapter 5 of Volume 1
for more information.

Comments

The file created must be a block file. The access attribute of the file is
implicitly set to the following:

standard file = $E3: (destroy, backup, rename, write, read)
subdirectory = $E1: (destroy, backup, rename, NO write, read)

6 SOS Reference Manual

Errors

$27: IOERR I/O error
$2B: NOWRITE Volume is write-protected
$40: BADPATH Invalid pathname syntax
$44: PNFERR Path not found
$45: VNFERR Volume not found
$46: FNFERR Subdirectory file not found
$47: DUPERR Attempt to CREATE an existing file
$48: OVRERR Overrun error. Either EOF too large or not

enough disk space
$49: DIRFULL Directory is full
$4B: TYPERR Storage type parameter neither $01 nor $0D
$52: NOTSOS Not a SOS volume
$53: BADLSTCNT Invalid length parameter
$58: NOTBLKDEV Not a block device

File Calls and Errors 7

9.1.2 DESTROY File Call $C1

subdirectory file. Volume
directories cannot be destroyed except by physical reformatting of the
medium. Character files are "destroyed" by the System Configuration
Program.

This call deletes the file specified by DESTROY $C1
the pathname parameter by
removing the file’s directory entry. 0 $01
DESTROY releases all blocks used —

by that file back to free space on 1
pathname

that volume.
2

pointer

The file can be either a standard or

Required Parameters

pathname: pointer

This parameter is a pointer to a string containing the pathname of the file
to be destroyed: the first byte of the string contains the number of bytes in
the pathname; the remaining bytes contain the pathname itself.

Comments

A file cannot be destroyed if it is currently open. If the pathname refers to
a subdirectory file, then that subdirectory must be completely empty in
order for the subdirectory to be destroyed.

8 SOS Reference Manual

Errors

$27:
$2B:
$40:
$44:
$45:
$46:
$4A:
$4B:
$4E:

IOERR
NOWRITE
BADPATH
PNFERR
VNFERR
FNFERR
CPTERR
TYPERR
ACCSERR

FILBUSY
NOTSOS
NOTBLKDEV

I/O error
Volume is write-protected
Invalid pathname syntax
Path not found
Volume not found
File not found
Incompatible file format
Unsupported file storage type
File’s access attribute prevents
DESTROY
File is open. Request denied.
Not a SOS volume
Not a block device

File Calls and Errors 9

9.1.3 RENAME File Call $C2

This call changes the name of the
file specified by the pathname
parameter to that specified by
new_pathname. Only block files
may be renamed; character files are
"renamed" by the System
Configuration Program.

Required Parameters

pathname: pointer

This parameter is a pointer to a
string containing the old pathname of the file to be renamed: the first byte
of the string contains the number of bytes in the pathname; the remaining
bytes contain the pathname itself. The pathname must refer to either a
volume directory, subdirectory, or standard file.

new_pathname: pointer

This parameter is a pointer to a string containing the new pathname of the
file to be renamed: the first byte of the string contains the number of bytes
in the pathname; the remaining bytes contain the pathname itself. The
pathname can be either a complete or partial pathname. Only the last
file name of the new pathname may differ from that in the old pathname.

Comments

The file must reside on a block device. Both pathname and
new_pathname must be identical except for the last file name. For
example, the path /VOL.1/FILE.1 can be renamed /VOL.1/FILE.2, but
not /VOL.2/FILE.X or /VOL.1/SUBDIR.A/FILE.X.

A file may not be renamed while it is open for writing.

If new pathname matches the pathname of an existing file, you will get
a DUP~ERR.

10 SOS Reference Manual

Errors

$27: IOERR I/O error
$2B: NOWRITE Volume is write-protected
$40: BADPATH Invalid pathname syntax
$44: PNFERR Path not found
$45: VNFERR Volume not found
$46: FNFERR File not found
$47: DUPERR Duplicate file name
$4A: CPTERR Incompatible file format
$4B: TYPERR File storage type not supported
$4E: ACCSERR File’s access attribute prevents RENAME
$50: FILBUSY File is open. Request denied.
$52: NOTSOS Not a SOS volume
$57: DUPVOL Duplicate volume
$58: NOTBLKDEV Not a block device

File Calls and Errors 11

9.1.4 SET_FILE_INFO File Call $C3

This call modifies file information
in the directory entry of the block
file specified by the pathname
parameter. If the file is closed, a
SET_FILE_INFO call will modify
the file information immediately.
This information will be returned
by any subsequent
GET_FILE_INFO calls. If the file
is open, no file information will be
modified until the file is closed.

Required Parameters

pathname: pointer

This parameter is a pointer to a
string containing the file name of
the file whose directory entry will
be modified: the first byte of the
string contains the number of bytes
in the pathname; the remaining
bytes contain the pathname itself.

option list: pointer

This is a pointer to the optional
parameter list if length is between
$01 and $0F; otherwise it is ignored.

length: 1 byte value
Range: $00..$0F

This is the length of the optional parameter list. It specifies which optional
parameters are supplied. If length equals $00, no optional parameters are
supplied: the call does nothing more than error checking.

12 SOS Reference Manual

The values below tell the number of bytes in a list with complete
parameters. If SOS receives an intermediate value, it does not take half a
parameter, but reduces the length to the next defined value.

0 = no optional parameters
1 = access
2 = access through file type
4 = access through aux type
F = access through last mod

Optional Parameters

access: 1 byte value
Range: $00..$E3
Default: None

This parameter specifies the access allowed to the file. Bits 4 through 2
are reserved for future implementation and must be set to 0, otherwise an
ACCSERR will occur.

For bits 7,6,1, and 0,

0 = not allowed
1 - allowed

These bits may be altered as the user wishes by the SET FILE INFO
call.

File Calls and Errors 13

For bit 5,

0 = backup not needed
1 = backup needed

This bit is always set when a SET_FILE_INFO call is made. Only
the Backup III program can clear it.

file type: 1 byte value
Range: $00..$FF
Default: Current value

This the type identifier for this file. The filejype does not affect the way in
which SOS deals with the file: it is used only by interpreters to determine
the internal arrangement and meaning of the bytes in the file. These values
of file type are now defined:

$00 = Typeless file (BASIC or Pascal "unknown" file)
$01 = File containing all bad blocks on the volume
$02 = Pascal or assembly-language code file
$03 = Pascal text file
$04 = BASIC text file; Pascal ASCI I file
$05 = Pascal data file
$06 = General binary file
$07 = Font file
$08 = Screen image file
$09 ~ Business BASIC program file
$0A = Business BASIC data file
$0B = Word Processor file
$0C = SOS system file (DRIVER, INTERP, KERNEL)
$0D, $0E= SOS reserved
$0F - Directory file (see storagetype)
$10..$DF= SOS reserved
$E0..$FF= ProDOS reserved

14 SOS Reference Manual
0

auxtype: 2 byte value
Range: $0000..$FFFF
Default: Current value

This is the auxiliary file identifier. It is used by interpreters to store any
additional information about the file. BASIC, for example, uses this field
to store the record size of its data files. If the file is a volume directory
(storage type is $0F), these bytes contain the total number of blocks on
the volume.

unused: 7 bytes

These bytes are here to maintain symmetry with GET_FILE_INFO, and
are always ignored by SET FILE INFO.

last mod: 4 byte value
Range: $00000000..$FFFFFFFF
Default: Current value

This is the date and time the file was last closed after being written to. It
can be set to a user-defined value, or you can use the GET TIME call
(see the Utility calls) and form this value from the current time. The
last mod parameter is organized as two 2-byte words, each stored low
byte first:

The ranges for these fields are as follows:

Year: 0..99 ($00..$63)
Month: 0..12 ($00..$0C)
Day: 0..31 ($00..$1F)
Hour: 0..24 ($00..$18)
Minute: 0..60 ($00..$3C)

A zero value for the month or day means that no value was set.

File Calls and Errors 15

No checking is performed on this parameter. If you use the GET_TIME
call, you must pack the 18-byte time parameter from that call into the
proper format for the SET_FILE_INFO call’s last_mod parameter.

Comments

The default value for all optional parameters that are omitted is the current
value of that attribute of the file: for example, omitting the last_mod
parameter results in no change to that file’s modification date and time.

The same required and optional parameter lists can be used for
GET FILE INFO. In fact, you can perform a
GET FILE INFO, examine and perhaps alter the values in the
parameter lists, and then perform a SET_FILE_INFO to update
the file’s attributes.

You can perform SET_FILE__INFO on any block file, regardless of the
current value of its access attribute. In this call, therefore, an access error
can result only from passing an invalid access parameter.

SET FILE INFO affects a file’s directory entry only. It does not affect
the FOB entry for any access path to the file. Specifically, if you open a file
with read/write access, then use a SET_FILE_INFO call to change the
access to read-only, you still write to the file via that access path, but you
cannot open another access path. This is because the access field in the
file’s directory entry will not be updated until the file is closed, and the
FOB entries will not be updated at all: so, as far as SOS is concerned, this
is still a read/write file, for which only one access path is allowed. As soon
as you close the file, however, the new access value will be stored in the
directory entry, and multiple read-only access paths can be opened.

16 SOS Reference Manual

Errors

$27:
$2B:
$40:
$44:
$45:
$46:
$4A:
$4B:
$4E:
$52:
$53:
$58:

IOERR
NOWRITE
BADPATH
PNFERR
VNFERR
FNFERR
CPTERR
TYPERR
ACCSERR
NOTSOS
BADLSTCNT
NOTBLKDEV

I/O error
Volume is write-protected
Invalid pathname syntax
Path not found
Volume not found
File not found
Incompatible file format
Unsupported file storage type
Access parameter invalid
Not a SOS volume
Length parameter invalid
File is not on a block device

File Calls and Errors 17

9.1.5 GET_FILE_INFO File Call $C4

This call returns file information
from the directory entry of the
block file specified by the
pathname parameter.

Required Parameters

pathname: pointer

This parameter is a pointer to a
string containing the pathname of
the file whose directory entry
information will be returned: the
first byte of the string contains the
number of bytes in the pathname;
the remaining bytes contain the
pathname itself.

optionjist: pointer

This is a pointer to the optional
parameter list if length is between
$01 and $0F; otherwise it is ignored.

length: 1 byte value
Range: $00..$0F

This is the length of the optional
parameter list. If length equals $00,
no optional parameters are
returned: the call does nothing
more than error checking.

The values below tell the number
of bytes in a list with complete
parameters. If SOS receives an
intermediate value, it does not take

GET_FILE_INFO $C4

half a parameter, but reduces the length to the next defined value.

18 SOS Reference Manual

$00 = no optional parameters
$01 = access
$02 = access through file type
$04 = access through auxjype
$05 = access through storage type
$09 = access through EOF
$0B = access through blocksused
$0F - access through last mod

Optional Parameters

access: 1 byte result
Range: $00..$C3

This parameter returns the access allowed to the file. Bits 4 through 2 are
reserved for future implementation and are now set to 0.

For bits 7,6,1, and 0,

0 = not allowed
1 = allowed

For bit 5,

0 = backup not needed
1 = backup needed

file Jype: 1 byte result
Range: $00..$FF

This the type identifier for this file. The filejype does not affect the way in
which SOS deals with the file: it is used only by interpreters to determine

File Calls and Errors 19

n
■

n

ii
n

the internal arrangement and meaning of the bytes in the file. These
values of file type are now defined:

$00 = Typeless file (BASIC or Pascal “unknown” file)
$01 = File containing all bad blocks on the volume
$02 = Pascal or assembly-language code file
$03 = Pascal text file
$04 = BASIC text file; Pascal ASCI I file
$05 = Pascal data file
$06 = General binary file
$07 = Font file
$08 = Screen image file
$09 = Business BASIC program file
$0B = Word Processor file
$0C = SOS system file (DRIVER, INTERP, KERNEL)
$0D, $0E = SOS reserved
$0F = Directory file (see storagejype)
$10..$DF = SOS reserved
$E0..$FF = ProDOS reserved

aux type: 2 byte result
Range: $0000..$FFFF

This is the auxiliary file identifier. It is used by interpreters to store any
additional information about the file. BASIC, for example, uses this field
to store the record size of its data files. If the file is a volume directory
(storagejype is $0F), these bytes contain the total number of blocks
on the volume.

storagejype: 1 byte result
Range: $01 ..$03, $0D, $0F

This byte describes the external format of the file: how the blocks that
compose the file are stored on the volume.

$01 = seedling file (0
$02 = sapling file (512
$03=treefile (128K
$0D = subdirectory file
$0F = volume directory file

< = EOF <=512 bytes)
< EOF < = 128K bytes)
< EOF < 16M bytes)

20 SOS Reference Manual

These structures are fully explained in Chapter 5. In brief, seedling files
are stored as one data block; sapling files are stored as one index block
and up to 256 data blocks; tree files are stored as one root index block,
up to 127 subindex blocks, and up to 32,767 data blocks. Directories and
subdirectories do not use index blocks, and instead are stored as doubly-
linked lists of blocks.

EOF: 4 byte result
Range: $00000000..$00FFFFFF

This is the position of the end of file marker. It indicates the number
of bytes readable from the file. This is the EOF value stored in the file's
directory entry when the file was created or last closed. It is accurate
only if the file is not open for writing. If the file is open for writing, the
current EOF (stored in the file’s FCB entry) can be read by the
GET_EOFcall.

blocksused: 2 byte result
Range: S0000..SFFFF

If the file is a standard file or subdirectory (storage type is $01, $02, $03,
or $0D), blocks used is the total number of blocks (including index
blocks) currently used by the file.

If the file is a sparse file, the blocks used value can be
substantially less than one would expect from the EOF.

If the file is a volume directory (storagejype is $0F), blocks used is the
total number of blocks used by all files on the volume.

last mod: 4 byte result
Range: $00000000..$FFFFFFFF

This is the date and time the file was last closed after being written to. If
the file has never been written to, these bytes are the same as the creation
date of the file. SET_FILE_INFO can also change the modification date.

File Calls and Errors 21

The ranges for these fields are as follows:

Year: 0..99 ($00..$63)
Month: 0..12 ($00..$0C)
Day: 0..31 ($00..$1F)
Hour: 0..24 ($00..$18)
Minute: 0..60 ($00..$3C)

A zero value for the month or day means that no value was set.

Comments

This call can be performed when the file is either open or closed.
The same required and optional parameter lists can be used for
SET FILE INFO. A GET FILE INFO call to an open file will return
file information from the directory entry, not access path information from
the FOB entry. This is not surprising, since the GET FILE INFO call
refers to a file by its pathname, not its ref_num. For example, if you have
changed the EOF since the file was opened, GET_FILE_INFO will not
return the current value.

Errors

$27:
$40:
$44:
$45:
$46:
$4A:
$4B:
$52:
$53:
$58:

BADPATH
PNFERR
VNFERR
FNFERR
CPTERR
TYPERR
NOTSOS
BADLSTCNT Length parameter invalid
NOTBLKDEV Not a block device

IOERR I/O error
Invalid pathname syntax
Path not found
Volume not found
File not found
Incompatible file format
Unsupported file storage type
Not a SOS volume

File Calls and Errors 23

9.1.6 VOLUME File Call $C5

VOLUME $C5

$040

3

5

6

8

vol_name
pointer

dev.name
pointer

free.blocks
result

total-blocks
result

This parameter is a pointer to a
string containing the device name:
the first byte of the string contains
the number of bytes in the device
name; the remaining bytes contain
the device name itself.

When given the name of a device,
this call returns the volume name of
the volume contained in that
device, the number of blocks on
that volume, and the number of
currently unallocated blocks on
that volume.

vol_name: pointer

This is a pointer to a buffer at least $10 bytes long into which the volume
name will be returned: the first byte in the buffer contains the number of
bytes in the volume name; the rest contain the name itself.

Required Parameters
dev_name: pointer

total_blocks: 2 byte result
Range: $0000..$FFFF

This is the total number of blocks contained by the volume in the
specified block device.

free_blocks: 2 byte result
Range: $0000..$FFFF

This is the number of unallocated blocks contained by the volume in the
specified block device.

Comments

The dev name must point to the name of a block device.

24 SOS Reference Manual

Errors

$10: DNFERR
$27: IOERR
$45: VNFERR
$4A: CPTERR
$52: NOTSOS
$58: NOTBLKDEV

Device not found
I/O error
Volume not found
Incompatible file format
Not a SOS volume
Not a block device

File Calls and Errors 25

9.1.7 SET_PREFIX File Call $C6

This call sets the current SOS
prefix pathname to that specified by
pathname.

Required Parameters

pathname: pointer

SET_PREFIX $C6

0 $01

1
pathname

pointer

This parameter is a pointer to a string containing the pathname that will
replace the current prefix pathname: the first byte of the string contains
the number of bytes in the pathname; the remaining bytes contain the
pathname itself. This pathname specifies a volume directory or
subdirectory, not a character file or a standard file.

Comments

The system prefix is appended to the beginning of any pathname not
beginning in a volume name or device name: a volume name is preceded
by a slash, and a device name begins with a period.

If the new prefix begins with a volume name, only syntax checking is
performed on it: SOS does not verify that the directory file specified by
the prefix is actually on line. If the new prefix begins with a device name,
SOS substitutes the corresponding volume name: the SOS prefix always
begins with a volume name.

The prefix can be reset to null by passing a pathname with a length of
zero characters.

Upon system boot, the prefix is initialized to the volume directory name of
the boot disk.

The pathname can optionally terminate with a

26 SOS Reference Manual

Errors

$27:
$40:
$58:

IOERR I/O error
BADPATH Invalid pathname syntax
NOTBLKDEV Not a block device

File Calls and Errors 27

9.1.8 GET_PREFIX File Gall $C7

This call returns the current SOS
prefix pathname.

0

Required Parameters 1

pathname: pointer 2

This parameter is a pointer to a
string into which SOS is to store 3
the current prefix pathname: the
first byte of the string contains
the number of bytes in the prefix; the remaining
prefix itself.

length: 1 byte value
Range: $00..$FF
Default: $80

This is the maximum number of bytes in the pathname buffer. This should
be set as long as the longest prefix the interpreter accepts: SOS will
accept up to 128 ($80) bytes. A BTSERR is returned if the pathname is
longer than length.

GET_PREFIX $C7

$02

pathname
pointer

length
value

bytes contain the

Comments

If the SOS prefix pathname has been set to the null string (no prefix), the
null string is returned.

If the prefix pathname is not null, it is terminated with a slash.

If the first name in the prefix pathname is a volume name, the pathname
begins with a slash.

Errors

$4F: BTSERR Buffer too small

28 SOS Reference Manual

File Calls and Errors 29

9.1.9 OPEN File Call $C8

This call causes SOS to open an
access path (allowing read-access,
write-access, or both) to the file
specified by pathname. For this
access path, SOS makes an entry in
the file control block and allocates a
1024-byte I/O buffer. This buffer
holds the contents of one index
block (if the file has any) and one
data block.

Required Parameters

pathname: pointer

This is a pointer to a string in
memory containing the pathname
of the file to be opened: the first
byte is the number of characters in
the pathname; the remaining bytes
are the characters of the pathname
itself. It may be any block or
character file.

ref_num: 1 byte result
Range: $01..$10, $81..$90

The reference number is assigned when an access path to a file is
opened. It uniquely identifies an access path to the file: any open-file call
will operate on a single access path, not the file itself.

option list: pointer

This points to optional parameter list if length is between $01 and $04;
otherwise it is ignored.

30 SOS Reference Manual

length: 1 byte value
Range: $00..$04

This is the length in bytes of the optional parameter list. It specifies which
optional parameters are supplied.

The values below tell the number of bytes in a list with complete
parameters. If SOS receives an intermediate value, it does not take half a
parameter, but reduces the length to the next defined value.

$00 = no optional parameters
$01 - reqaccess
$04 = req access through io_buffer

Optional Parameters

req_access: 1 byte value
Range: $00..$03
Default: $00

This is the requested file access. SOS compares this parameter with the
file's current access-attribute byte to ensure that the intended file
operations are permitted. A $00 requests as much access as permitted.

$00 = Open as permitted
$01 = Open for reading only
$02 = Open for writing only
$03 = Open for reading and writing

A standard file that is already open for writing may have only one access
path: a req access of $00 will open the existing access path for reading as
well. A standard file on a write-protected volume may never be opened
for writing; a req access of $00 will open such a file for reading only.

A character file may have multiple access paths with read-access, write­
access, or both, if the file’s device allows such access.

File Calls and Errors 31

pages: 1 byte value
Range: $00 or $04
Default: $00

This is the length in 256-byte pages of a caller-supplied I/O buffer. If equal
to $00, then SOS finds its own buffer, ignoring the io_buffer parameter
below. If equal to $04, then SOS will use the 1024-byte buffer pointed to by
io_buffer. Any value except $00 or $04 is invalid.

If pages is nonzero, you must specify an io_buffer parameter.

In general, it is preferable to let SOS allocate an I/O buffer.

io_buffer: pointer

This is an indirect pointer to a caller-supplied I/O buffer if and only if the
pages parameter is nonzero.

Comments

On block files, multiple access paths for read-access are permitted.

On block files, only one access path for writing is permitted: no
other access path, even for reading only, is permitted at the same time.

Multiple access paths on character files for both read- and write-access
are permitted.

OPEN sets the file level of the opened file to the current system file level
(see SET_LEVEL and GET_LEVEL). Unless the file level is raised, a
subsequent CLOSE or FLUSH of multiple files will close or flush this file.

The option Jist and length parameters are ignored when OPENing
character files; no optional parameters are used.

32 SOS Reference Manual

Errors

$27:
$40:
$41:
$42:
$44:
$45:
$46:
$4A:
$4B:
$4E:
$4F:
$50:
$52:
$53:
$54:
$55:
$56:
$57:

IOERR
BADPATH
CFCBFULL
FCBFULL
PNFERR
VNFERR
FNFERR
CPTERR
TYPERR
ACCSERR
BTSERR
FILBUSY
NOTSOS
BADLSTCNT
OUTOFMEM
BUFTBLFULL
BADSYSBUF
DUPVOL

I/O error
Invalid pathname syntax
Character File Control Block table full
Block File Control Block table full
Path not found
Volume not found
File not found
Incompatible file format
Unsupported file storage type
File doesn’t allow this req_access
User-supplied buffer too small
Can’t open for multiple writes
Not a SOS diskette
Length parameter invalid
Out of free memory for buffer
Buffer table full
Invalid system buffer parameter
Duplicate volume

File Calls and Errors 33

9.1.10 NEWLINE File Call $C9

This call allows the caller to turn
newline read mode on or off. Once
newline mode has been turned on,
any subsequent READ operation
will immediately terminate if the
newline character is encountered in
the input byte stream.

NEWLINE $C9

$03

refnum
value

is newline

Required Parameters value

ref_num: 1 byte value
Range: $01 ..$10, $81 ..$90

This is the reference number of the access path, provided by the
OPEN call.

is_newline: 1 byte value
Range: $00..$FF

The high bit of this byte determines whether newline read mode is on or
off. If it is set (is_newline > $7F), newline mode is on; otherwise, newline
mode is off.

newline_char: 1 byte value
Range: $00..$FF

This byte indicates the character used to terminate read requests. If
newline read mode is off, this parameter is ignored.

34 SOS Reference Manual

Comments

The newline_char byte need not have any ASCII interpretation.

A NEWLINE call to a character file implicitly does a D_CONTROL call
number 2 (set newline mode) to the device driver represented by that file.
This changes the newline mode of all access paths to that character file.

Errors

$43: BADREFNUM Bad reference number

File Calls and Errors 35

n
n

■
n
n
n

9.1.11 READ

This call attempts to transfer
request_count bytes, starting from
the current file position (mark),
from the I/O buffer of the file access
path specified by ref_num into the
interpreter’s data buffer pointed to
by data_buffer. If newline read
mode is enabled and the newline
character is encountered before
request_count bytes have been
read, then the transfer_count
parameter will be less than
request_count and exactly equal to
the number of bytes transferred,
including the newline byte.

Required Parameters

ref_num: 1 byte value
Range: $01 ..$10, $81 ..$90

File Call $CA

0

1

2

3

4

5

6

7

READ $CA

$04

ref num
value

databuffer
pointer

requestcount
value

transfercount
result

This is the reference number of the access path to be read from, obtained
through an OPEN call.

data buffer: pointer

This is a pointer to the first byte of a caller-supplied buffer at least
request count bytes long.

requestcount: 2 byte value
Range: $0000..$FFFF

This is the number of bytes SOS is to read from the file into the buffer. If
request count equals $0000, the READ call does error checking only: no
bytes are read.

36 SOS Reference Manual

transfer count: 2 byte result
Range: $0000..request_count

If a READ is successful, the number of bytes transferred to the data buffer
is returned in this parameter. If a READ is completely unsuccessful,
transfer_count equals $0000.

Comments

READ advances the current file position (mark) by one byte for each byte
transferred. It will advance the mark up to the end-of-file (EOF) marker,
which points one byte past the last byte in the file. READ fails with an
EOFERR if and only if the mark already equals EOF; in this case, no bytes
are transferred and transfer_count returns zero.

If a READ operation spans several contiguous blocks on a disk, SOS
transfers whole blocks directly to the interpreter’s data buffer, bypassing
the I/O buffer; partial blocks go through the I/O buffer. This optimization
improves performance, but is otherwise invisible to the interpreter writer
and user.

Errors

$27:
$43:
$4C:
$4E:

IOERR I/O error
BADREFNUM Invalid reference number
EOFERR End of file has been encountered
ACCSERR File not open for READing

File Calls and Errors 37

n

H

9.1.12 WRITE

This call attempts to transfer
request count bytes, starting from
the current file position (mark),
from the buffer pointed to by
databuffer to the open file
specified by ref_num.

Required Parameters

ref_num: 1 byte value
Range: $01 ..$10, $81 ..$90

This is the reference number of the
file to be written to, obtained by an
OPEN call.

File Call $CB

WRITE $CB

0

1

2

3

4

5

$03

refnum
value

databuffer
pointer

requestcount
value

data buffer: pointer

This is a pointer to a caller-supplies buffer from which SOS is to draw the
bytes to be written to the file. This pointer is not modified by SOS.

requestcount: 2 byte value
Range: $0000..$FFFF

This is the number of bytes to be written to the file.

Comments

If WRITE ends with an OVRERR, it has written all the bytes that it can to
the file: it will not tell you how many it has written. Otherwise, WRITE
always succeeds or fails completely.

Bytes written to a file may be stored in an I/O buffer, and sent a
buffer-load at a time. For block files, WRITE physically alters the bytes on
the volume only when a block of bytes has been written to the file: this
occurs automatically when the mark crosses a block boundary. To ensure
that information in the buffer has been updated on the volume, use the
FLUSH call.

38 SOS Reference Manual ■i

Errors

$27:
$2B:
$43:
$48:
$4E:

IOERR
NOWRITE
BADREFNUM
OVRERR
ACCSERR

I/O error
Volume write-protected
Invalid reference number
Not enough room in file or on volume
Tried to write to read-only file

File Calls and Errors 39

9.1.13 CLOSE File Call $CC

The file access path specified by
ref_num is closed. Its file control
block (FCB) entry is deleted, and if
the file is a block file that has been
written to, its I/O buffer is written
to the file. The directory entry of a
block file is then updated from the
FCB entry. Further file operations using that ref_num will fail.

Required Parameters

ref_num: 1 byte value
Range: $00..$10, $81 ..$90

This is the reference number of the file to be closed, obtained by an
OPEN call.

Comments

If a block file has been written to, a CLOSE call changes the modification
date and time of the file to the current date and time.

If ref_num equals $00, all open files are closed whose file level (see
SET_LEVEL, GET_LEVEL) is greater than or equal to the current
system level.

If an error occurs while closing multiple files, all files that can be closed
will be, and CLOSE will return the error number of the last error that
occurred. CLOSE will not tell you which files were closed and which
were not.

CLOSE $CC

0

1

$01

refnum
value

40 SOS Reference Manual

Errors

$27: IOERR I/O error
$2B: NOWRITE Volume is write-protected
$43: BADREFNUM Invalid reference number
$48: OVRERR Not enough room on volume

File Calls and Errors 41

II
n
n
ii
M

II

n

■
n

9.1.14 FLUSH File Call $CD

If a previous WRITE call has left
any data in a block file’s I/O buffer,
the FLUSH call writes these data to
the volume the file is stored on and
clears the buffer. If the I/O buffer is
empty, FLUSH simply returns an
error code of $00.

FLUSH $CD

0 $01

1
refnum

value

Required Parameters

ref_num: 1 byte value
Range: $00..$10

This is the reference number of the block file access path to be FLUSHed,
obained from an OPEN call. Since the file is open for writing, this access
path is the only one.

Comments

FLUSH must be used only on block file access paths that are open
for writing.

If the ref_num equals $00, all open files are FLUSHed whose file level (see
SET_LEVEL, GET_LEVEL) is greater than or equal to the current
system file level.

FLUSH is a time-consuming call: if it is used when not needed,
performance will suffer.

42 SOS Reference Manual

Errors

$27:
$2B:
$43:
$48:
$58:

IOERR
NOWRITE
BADREFNUM
OVRERR
NOTBLKDEV

I/O error
Volume is write-protected
Invalid reference number
Not enough room on volume
Not a block device

File Calls and Errors 43

9.1.15 SET_MARK

This call changes the current file
position (mark) of the file access
path specified by ref_num. The
mark can be changed to an
absolute byte position in the file, or
to a position relative to the EOF or
the current mark.

Required Parameters

ref_num: 1 byte value
Range: $01..$10

This is the reference number of the
block file access path whose mark
is to be moved, obtained through
an OPEN call.

File Call $CE

base: 1 byte value
Range: $00..$03

This is the starting byte position in the file from which to calculate the
new mark position.

$00 = Absolute, byte $00000000..$00FFFFFF
$01 - Backward from EOF
$02 = Forward from current mark
$03 = Backward from current mark

displacement: 4 byte value
Range: $00000000..$00FFFFFF

This is the number of bytes the mark is to move from the starting location
specified by the base parameter. The final computed position must lie
between $0 and the current EOF ($0 <= mark <= EOF <= $FFFFFF).

SOS Reference Manual

Errors

$27: IOERR
$43: BADREFNUM
$4D: POSNERR
$58: NOTBLKDEV

I/O error
Invalid reference number
Position out of range
Not a block device

File Calls and Errors 45

9.1.16 GET_MARK

This call returns the current file
position (mark) of the block file
access path specified by ref_num. 0

1
Required Parameters

2
ref_num1:1 byte value

Range: $01..$10 3

This is the reference number of the 4
file whose current position is to be
returned. s

mark: 4 byte result
Range: $00000000 through

current EOF value

This is the current mark position in the file.

Errors

File Call $CF
GET_MARK$CF

$02

refnum
value

mark
result

$43: BADREFNUM Invalid reference number
$58: NOTBLKDEV Not a block device

SOS Reference Manual

File Calls and Errors 47

■
II
II
■
■
■
■
■
■
■
■
■
■
■

9.1.17 SET_EOF

This call changes the end-of-file
marker (EOF) of the block file
whose access path is specified by
ref num. The EOF can be changed
to an absolute byte position, or to a
position relative to the current EOF
or the current mark.

File Call $D0
SET EOF $D0

If the new EOF is less than the
current EOF, empty blocks at the
end of the file are released to the
system and their data are lost. If
the new EOF is greater than the
current EOF, blocks are not
physically allocated for unwritten
data. (This is one way of creating a sparse file.) If a program attempts to
read from these newly created logical positions before they have been
physically written to, SOS supplies a null ($00) for each byte requested.

Required Parameters

ref_num: 1 byte value
Range: $01..$10

This is the reference number of the file whose EOF is to be changed,
returned by an OPEN call. It must refer to a block file open for writing, and
is thus the file’s sole ref_num.

n
■

SOS Reference Manual

base: 1 byte value
Range: $00..$03

This is the position in the file from which to calculate the new value of
EOF, (the current number of bytes in the file).

$00 = Absolute, byte $000000..$FFFFFF
$01 = Backward from current EOF
$02 = Forward from current mark position
$03 = Backward from current mark position

displacement: 4 byte value
Range: $00000000..$00FFFFFF

This is the number of bytes the EOF is to move from the starting position
specified in the base parameter. The final computed position must be
greater than or equal to $000000, and less than or equal to $FFFFFF.

Comments

The file must be a block file currently open for writing. Since such a file
can have only one access path, the ref_num specifies the file, as well as
the access path.

This call updates the EOF field in the file control block entry, but not the
EOF field in the file’s directory entry: the latter is updated only when the
access path is closed. For this reason, a GET_FILE_INFO call to an
open file will not always return the current EOF. A GET_EOF call will.

Errors

$27:
$2B:
$43:
$4D:
$4E:
$58:

IOERR
NOWRITE
BADREFNUM
POSNERR
ACCSERR
NOTBLKDEV

I/O error
Volume write-protected
Invalid reference number
Position out of range
Tried to move EOF of read-only file
Not a block device

File Calls and Errors 9

File Call $D19.1.18 GET_EOF

Required Parameters

This is the number of bytes that can be read from the file.

Errors

■

This is the reference number of the
file whose current position is to be
returned, provided by an OPEN call.

$43: BADREFNUM Invalid reference number
$58: NOTBLKDEV Not a block device

This returns the current end-of-file
(EOF) position of the file specified
by ref_num.

ref_num: 1 byte value
Range: $01..$10

EOF: 4 byte result
Range: $00000000..$00FFFFFF

50 SOS Reference Manual

File Calls and Errors 51

9.1.19 SET_LEVEL File Call $D2

This call changes the current value
of the system file level. All
subsequent OPENs will assign this
level to the files opened. All
subsequent CLOSE and FLUSH
operations on multiple files (using

SET_LEVEL $D2

0

1

$01

level
value

a ref_num of $00) will operate on
only those files that were opened with a level greater than or equal to the
new level.

Required Parameters

level: 1 byte value
Range: $01 ..$03

This specifies the new file level.

Comments

The system file level is set to $01 at boot time.

Errors

$59: LEVLERR Invalid file level

52 SOS Reference Manual

File Calls and Errors 53

9.1.20 GET_LEVEL

This call returns the current value
of the system file level. See
SET_LEVEL, OPEN, CLOSE, and
FLUSH.

Required Parameters

level: 1 byte result
Range: $01..$03

File Call $D3

0

1

GET—LEVEL $D3

$01

level
result

This parameter returns the current file level.

Comments

The file level is set to $01 at boot time.

9.2 File Call Errors

These error messages can be generated by SOS file calls; in addition,
some of these calls may generate device call errors, described in section
10.2. Other errors are listed in Appendix D.

$40: Invalid pathname syntax (BADPATH)

The pathname violates the syntax rules in Chapter 4 of Volume 1.

$41: Character File Control Block full (CFCBFULL)

The Character File Control Block (CFCB) table can contain a maximum
of $10 entries. Opening the same character file more than once will return
the same ref_num (that is, will not consume an additional entry).

54 SOS Reference Manual

$42: Block File or Volume Control Block full (FCBFULL)

The Block File Control Block (BFCB) table can contain a maximum of
$10 entries. The Volume Control Block (VCB) table can contain a
maximum of $08 entries. Opening the same block file more than than
once returns a different ref_num and consumes a new entry in the BFCB
table. Every volume with an open file on it, whether it is mounted on a
device or not, consumes one entry in the VCB table.

$43: Invalid reference number (BADREFNUM)

The ref_num input parameter does not match the ref_num of any currently
open file. This error is also returned if the currently open file is marked
with a bad storagejype; only $01 through $04, $0D, and $0F are allowed.

$44: Path not found (PNFERR)

Some file name in the pathname refers to a nonexistent file. The
pathname’s syntax is legal.

$45: Volume not found (VNFERR)

The volume name in the pathname refers to a nonexistent volume
directory. The pathname’s syntax is legal.

$46: File not found (FNFERR)

The last file name in the pathname refers to a nonexistent file. The
pathname’s syntax is legal. Note that a missing volume directory file
returns VNFERR instead of FNFERR.

$47: Duplicate file name (DUPERR)

An attempt was made to CREATE a file using a pathname that already
belongs to a file, or a RENAME was attempted using a new pathname
that already belongs to a file.

$48: Overrun on volume (OVRERR)

An attempt to allocate blocks on a volume during a CREATE or WRITE
operation failed due to lack of space on the volume. This error also is
returned on an invalid EOF parameter.

File Calls and Errors 55

$49: Directory full (DIRFULL)

No more entries are left in the root/subdirectory. Thus no more files can
be added (CREATEd) in this directory until another file is DESTROYed.

$4A: Incompatible file format (CPTERR)

The file is not backward compatible with this version of SOS.

$4B: Unsupported storage type (TYPERR)

The CREATE call accepts only two values for the storage type parameter:
$01 (standard file) or$0D (subdirectory file).

$4C: End of file would be exceeded (EOFERR)

A READ call was attempted when the mark was equal to the EOF.

$4D: Position out of range (POSNERR)

A base/displacement parameter pair produced an invalid mark or EOF.

$4E: Access not allowed (ACCSERR)

The user attempted to access (RENAME, DESTROY, READ from, or
WRITE to) a file in a way not allowed by its access attribute.

$4F: Buffer too small (BTSERR)

The user supplied a buffer too small for its purpose.

$50: File busy (FILBUSY)

An attempt was made to RENAME or DESTROY an open file or to OPEN
a block file already open for writing.

$51: Directory error (DIRERR)

The directory entry count disagrees with the actual number of entries in
the directory file.

$52: Not a SOS volume (NOTSOS)

The volume in the block device contains a directory that is not in SOS
format: it may be an Apple II Pascal or DOS 3.3 volume.

56 SOS Reference Manual

$53: Length parameter invalid (BADLSTCNT)

The length supplied for the optional parameter list is invalid.

$54: Out of memory (OUTOFMEM)

There is not enough free memory for the SOS system buffer. The user
must release some memory to SOS to allow the system to use it.

$55: Buffer Table full (BUFTBLFULL)

The Buffer Table can contain a maximum of $10 entries.

$56: Invalid system buffer parameter (BADSYSBUF)

The buffer pointer parameter must be an extended indirect pointer.

$57: Duplicate volume (DUPVOL)

A SOS call asked SOS to bring a volume on-line on a particular block
device. The request was denied because a volume with the same name on
another block device is currently on line and contains a currently open
file.

$58: Not a block device (NOTBLKDEV)

Only OPEN, NEWLINE, READ, WRITE, and CLOSE file calls can
reference a character file. For example, CREATE is not permitted on the
character file .PRINTER.

$59: Invalid level (LVLERR)

The SET LEVEL call received a parameter less than $01 or greater than
$03.

$5A: Invalid bit map address (BITMAPADR)

An index block contained a block number that, according to the bit map,
is not physically available on the volume: usually this indicates that the
blocks on the volume have been scrambled.

Device Calls and Errors 57

Device Calls and Errors

n

n
R
R

58 10.1 Device Calls
59 10.1.1 D_STATUS
63 10.1.2 D_CONTROL
65 10.1.3 GET_DEV_NUM
67 10.1.4 D_INFO
71 10.2 Device Call Errors

■
R

H
R
n
n

SOS Reference Manual58

Device Calls

These SOS calls operate directly on devices.

$82: D_STATUS
$83: D_CONTROL
$84: GET_DEV_NUM
$85: D_INFO

Device Calls and Errors 59

10.1.1 D_STATUS

This call returns status information
about a particular device. The
information can be either general
or device-specific information.
D_STATUS returns information
about the internal status of
the device or its driver;
GET_DEV_INFO returns
information about the external status
of the driver and its interface
with SOS.

Device Call $82

D_STATUS $82

0 $03

1
devnum

value

2
statuscode

value

3 status list

4

pointer

Required Parameters

dev_num: 1 byte value
Range: $01 ..$18

This is the device number of the device from which to read status
information, obtained from the GET DEV NUM call. Each device in the
system has a unique device number assigned to it when the system is
booted. Device numbers do not change unless the SOS.DRIVER file is
changed and the system is rebooted.

status_code: 1 byte value
Range: $00..$FF

This is the number of the status request being made. All device drivers
respond to the following requests:

Block devices only:

$00 Return driver’s status byte

Character devices only:

$00 No effect
$01 Return driver’s control block
$02 Return newline status

60 SOS Reference Manual

Device drivers also may respond to other status codes. The complete list
of status requests available for a device driver is included in the
documentation accompanying that driver.

statusJist: pointer

This is a pointer to the buffer in which the device driver returns its status.
For the three requests above, the buffer is in one of these three formats:

Bit 7 6 5 4 3 2 1 0

BSY 0
“T”

0 0
I______

0 0
______ I______

WPR 0

device
write-protected

device
busy

Bit Meaning

BSY If 1, device is busy
WPR If 1, device or medium is write-protected

Figure 10-1. Block Device Status Request $00

length
value

status
list

(values)

Figure 10-2. Character Device Status Request $01

The status list for each driver has a different format. See the manual
describing that driver.

Device Calls and Errors 61

n
n
n
n
n

n
■
ii
n

isnewline
value

newline_char
value

Figure 10-3. Character Device Status Request $02

The newline character is called the termination character in the Apple III
Standard Device Drivers Manual.

Each driver that defines its own additional status requests also defines
buffer formats for those requests; see the manual describing that driver.

Comments

The length of the buffer pointed to by statusjist must vary depending
upon the particular status request being made.

Errors

$11:
$21:
$23:
$25:
$30..$3F

BADNUM
CTLCODE
NOTOPEN
NORESRC

Invalid device number
Invalid status code
Character device not open
Resource not available
Device-specific error

SOS Reference Manual62

Device Calls and Errors 63

10.1.2 D_CONTROL Device Call $83

This call sends control information
to a particular device. The
information can be either general
or device-specific information.
D_CONTROL operates on
character devices only.

Required Parameters

dev_num: 1 byte value
Range: $01 ..$18

This is the device number of the device to which to send control
information, obtained from the GET_DEV_NUM call. Each device in the
system has a unique device number assigned to it when the system is
booted. Device numbers do not change unless the SOS.DRIVER file is
changed and the system is rebooted.

control_code: 1 byte value
Range: $00..$FF

This is the number of the control request being made. All character device
drivers respond to the following requests:

$00 Reset device
$01 Restore driver’s control block
$02 Set newline mode and

character

Block devices do not respond to any control requests.

Device drivers also may respond to other control requests. The complete
list of control requests available for a device driver is included in the
documentation accompanying that driver.

control list: pointer

This is a pointer to the buffer from which the device driver draws the
control information. For the two requests above, the buffer is in one of
these two formats:

SOS Reference Manual

Figure 10-4. Character Device Control Code $01

The status list for each driver has a different format. See the manual
describing that driver.

isnewline
result

newlinechar
result

Figure 10-5. Character Device Control Code $02

The newline character is called the termination character in the Apple III
Standard Device Drivers Manual.

Each driver that defines its own additional control requests also defines
buffer formats for those requests; see the documentation for that driver.

Comments

The length of the buffer pointed to by control Jist must vary depending
upon the particular control request being made.

Errors

$11:
$21:
$23:
$25:
$26:
$30..$3F

BADNUM
CTLCODE
NOTOPEN
NORESRC
BADOP

Invalid device number
Invalid control code
Character device not open
Resource not available
No control of block devices allowed
Device-specific error

Device Calls and Errors 65

10.1.3 GET_DEV_NUM Device Call $84

This call returns the device number
of the driver whose device name is
specified. The device need not be
open. The dev_num returned is
used in the D STATUS,
D_CONTROL, and D_INFO calls.

Required Parameters

dev_name: pointer

This is a pointer to a string in memory containing the device name of the
device whose number is to be returned: the first byte of the string is the
number of bytes in the name; the rest are the bytes of the name itself. Note
that this a device name, not a pathname.

dev_num: 1 byte result
Range: $01..$18

This is the device number of the device specified by dev_name. The name
of a device can be changed by the System Configuration Program.

Errors

$10: DNFERR Device name not found

Device Calls and Errors 67

10.1.4 D INFO Device Call $85

This call returns the device name
(and optionally, other information)
about the device specified by dev_num.
The device’s character file need not
be open. D_INFO returns identifying
information about the device’s
external status and interface to SOS;
D STATUS returns information
about the internal status of the
device and its driver.

Required Parameters

dev_num: 1 byte value
Range: $01..$18

This is the device number of the
device whose information is to be
returned, obtained from the
GET_DEV_NUM call.

dev_name: pointer

This is a pointer to a sixteen-byte
buffer into which SOS is to store
the resulting device name: the first
byte of the buffer is the number of
bytes in the name; the rest are the
bytes of the name itself.

optionjist: pointer

This is a pointer to the optional
parameter list if length is between
$00 and $0A; otherwise it is ignored.

length: 1 byte value
Range: $00..$0A

D INFO $85

$040

3

5

0

3

unused4

5

8

9

A

devname
pointer

length
value

slotnum
result

optionjist
pointer

devnum
value

unitnum
result

subtype
result

dev type
result

manuf id
result

totalblocks
result

versionnum
result

This is the length in bytes of the optional parameter list. It specifies
which optional parameters are supplied.

68 SOS Reference Manual

The values below tell the number of bytes in a list with complete
parameters. If SOS receives an intermediate value, it does not take half
a parameter, but reduces the length to the next defined value.

$00 = no optional parameters
$01 = slotnum
$02 = slot num through unit_num
$03 = slot num through devjype
$05 = slot num through sub_type
$07 = slot num through totaT_blocks
$09 = slot num through manuf id
$0B = slot num through version_num

Optional Parameters

slot_num: 1 byte result
Range: $00..$04

This is the slot number of the peripheral slot the device uses. Slot
numbers $01 through $04 correspond to peripheral slots 1 through 4. Slot
number $00 indicates the device does not use a peripheral slot.

unit_num: 1 byte result
Range: $00..$FF

This is the unit number of the device. Devices that are bundled together
into one driver module are assigned unit numbers in ascending sequence,
beginning with $00. See the Apple III SOS Device Driver Writer’s Guide
for more details.

This parameter has nothing to do with the logical unit numbers
x / that Pascal associates with the devices.

devjype: 1 byte result
Range: $00..$FF

The devjype byte, along with the following byte, is used for
device classification and identification. This field specifies the
generic family that the device belongs to.

Device Calls and Errors 69

The dev type byte for SOS character devices has the following
structure:

7 6 5 4 3 2 1 0

0 W R 0
__________ I__________I__________

I i i
X X X X
__________ I_________ I__________ I__________

Bit 7 is cleared for all character devices.

Bit 6 (W) is write allowed byte. It must be set for all character devices that
accept data from the Apple III.

Bit 5 (R) is the read allowed bit. It must be set for all character devices that
send data to the Apple III.

Bit 4 is reserved for future use and must always be cleared.

The devjype byte for SOS block devices has the following structure:

7 6 5 4 3 2 1 0

1
I I

W Rem Fmt
__________ I_________ I__________

---------------- T I i
X X X X

__________ I_________ I__________ I-----------------

Bit 7 is set for all block devices.

Bit 6 (W) is write allowed byte. It must be set for all block devices that
accept data from the Apple III.

Bit 5 (R) is the removable device bit. It must be set for all block devices that
use removable storage media, such as floppy-disk drives.

Bit 4 is set if the driver can also format its device.

sub_type: 1 byte result
Range: $00..$FF

The device subtype identifies the specific device within the generic family
specified in devjype.

unused: 1 byte

70 SOS Reference Manual

total blocks: 2 byte result
Range: $0000..$FFFF

If the device is a block device, this parameter indicates the total number of
blocks it can access. If the device is a character device, this parameter
returns $0000. The Apple Ill’s built-in disk drive can access $0118 blocks.

manufjd: 2 byte result
Range: $0000..$FFFF

The manufacturer identification code uniquely identifies the manufacturer
of the driver. The currently assigned values are

$0000 Unknown
$0001 Apple Computer,Inc.

version num: 2 byte result
Range: $0000.. $9999

This is the version number of the device driver. The format is BCD (binary-
coded decimal); no hexadecimal digits from $A to $F will appear in this
result.

Comments

The following values for devjype and subtype are assigned:

devname devtype subtype

RS232 printer (.PRINTER) $41 $01
Silentype printer (.SILENTYPE) $41 $02
Parallel printer (.PARALLEL) $41 $03
Sound port (.AUDIO) $43 $01
System console (.CONSOLE) $61 $01
Graphics screen (.GRAFIX) $62 $01
Onboard RS232 (.RS232) $63 $01
Parallel card (.PARALLEL) $64 $01
Disk III (,D1 through .D4) $E1 $01
ProFile disk (.PROFILE) $D1 $02

Block device formatter:
Disk III (.FMTD1FMTD4) $11 $01

Device Calls and Errors 71

Please contact the PCS Division Product Support Department of Apple
Computer, Inc. if you wish to be assigned a devtype, sub type,
manuf_id, or version_num. This will ensure that such codes are unique
and are known to SOS and future application programs.

Errors

$11: BADNUM Invalid device number

10.2 Device Call Errors

The errors below are generated by SOS device calls; some of them are
also generated by SOS file calls. Other errors are listed in Appendix D.

$10: Device not found (DNFERR)

The device name passed as a parameter to GET_DEV_NUM is not that
of a device that is configured into the system: a device driver with that
name was not in the SOS.DRIVER file at the time the system was booted,
or that device driver was inactive.

$11: Invalid device number (BADDNUM)

The dev num parameter does not contain the device number of a device
configured into the system.

$20: Invalid request code (BADREQCODE)

This error is generated only for device requests, made by SOS to a device
driver, and should never be received as a result of a SOS call.

$21: Invalid status or control code (BADCTL)

The control (for D_CONTROL) or status (for D_STATUS) code is not
supported by the device driver being called.

$22: Invalid control parameter list (BADCTLPARM)

The parameter list specified by the control parameter to the
D_CONTROL call is not in the proper format for the control request
being made.

72 SOS Reference Manual

$23: Device not open (NOTOPEN)

The character device being referenced has not been opened by the file
OPEN call.

$25: Resources not available (NORESC)

The device driver is unable to acquire the system resources (such as
memory, I/O ports, or interrupts) it needs to operate. This error can also
occur during a file OPEN call.

$26: Call not supported on device (BADOP)

The requested SOS call is not supported by the device.

$27: I/O error (IOERR)

The device driver is unable to exchange information with the device, due
to a bad storage medium or communication line, or some other cause. If
this happens on a flexible disk, remove and replace the disk, and try again.

$2B: Device write-protected (NOWRITE)

The medium in this block device is write-protected. Remove the write­
protect tab and try again.

$2E: Disk switched (DISKSW)

The medium in the block device has been removed and possibly replaced.
This message is merely a warning, and occurs only the first time the call is
made: the second time the call is made, it will be executed.

Errors $30 through $3F are returned by individual device drivers, and
relate to specific error conditions within those drivers. The error codes
generated by a device driver are described in the manual describing that
device driver.

Memory Calls and Errors 73

Memory Calls and Errors

74 11.1 Memory Calls
75 11.1.1 REQUEST_SEG
77 11.1.2 FIND_SEG
81 11.1.3 CHANGE_SEG
83 11.1.4 GET_SEG_INFO
85 11.1.5 SET_SEG_NUM
87 11.1.6 RELEASE_SEG
88 11.2 Memory Call Errors

74 SOS Reference Manual

11.1 Memory Calls

These calls are used by SOS to allocate memory for interpreters, as
explained in section 2.3.

$40: REQUEST_SEG
$41: FIND_SEG
$42: CHANG E_SEG
$43: GET_SEG_INFO
$44: GET_SEG_NUM
$45: RELEASE SEG

Memory Calls and Errors 75

11.1.1 REQUEST_SEG Memory Call $40

This call requests the contiguous
region of memory bounded by the
base and limit segment addresses.
A new segment is created if and
only if no other segment currently
occupies part or all of the requested
region of memory.

Required Parameters

base: 2 byte value
Range: $0020..$10FF

This is the segment address (bank
followed by page) of the beginning
of the memory range requested.

limit: 2 byte value
Range: $0020..$10FF

This is the segment address of the end of the memory range requested.

seg_id: 1 byte value
Range: $00..$7F

This is the segment identification code of the requested segment. The
caller can use this parameter to identify the type of information that the
segment will contain.

The highest four bits of the seg_id identify the owner of the segment:

Seg id range Owner Contents

$00 to $0F SOS Kernel System code
$10to$1F Interpreter Interpreter data
$20 to $7F User User program and data

The memory system does not check this parameter to ensure that
it is in the proper range.

76 SOS Reference Manual

seg_num: 1 byte result
Range: $01 ..$1F

If the requested segment is available, this parameter returns the
segment number of the segment granted. This number must be
used to identify the segment in subsequent calls to
CHANGE_SEG, RELEASE_SEG, or GET_SEG_INFO.

Comments

Both the base and limit segment addresses must reside in switchable
banks $00 through $0E, system bank $0F, or system bank $10. In
addition, the base address must be less than or equal to the limit
address. If the base and limit segment address parameters fail to
meet the above criteria, then the segment will not be allocated and
error BADBKPG will be returned.

The ranges for base and limit are not continuous: these are the
allowable segment addresses:

$0020..$009F
$0120..$019F

$0E20..$0E9F
$0F00..$0F1 F
$10A0..$10FF

sos can keep track of $1F segments

Errors

$E0: BADBKPG Invalid segment address (bank/page pair)
$E1: SEGRQDN Segment request denied
$E2: SEGTBLFULL Segment table full

Memory Calls and Errors 77

11.1.2 FIND_SEG

This call searches memory from
high memory down, until it finds the
first free space that is pages pages
long and meets the search
restrictions in search_mode. If
such a space is found, it assigns
this free space to the caller as a
segment (as in REQUEST SEG),
returning both the segment number
and the location in memory of the
segment. If a segment with the
specified size is not found, then the
size of the largest free segment
which meets the given criterion will
be returned in pages. In this case,
however, error SEGRQDN will be
returned, indicating that the
segment was not created.

Required Parameters
search_mode: 1 byte value

Range: $00..$02

Memory Call $41
FIND_SEG $41

0 $06

1 searchmode
value

2
segjd
value

3

4

pages
value/result

5

6

base
result

7

8

limit
result

9 segnum
result

This parameter selects one of three constraints to place upon the
segment search:

$00: may not cross a 32K bank boundary
$01: may cross one 32K bank boundary
$02: may cross any 32K bank boundary

78 SOS Reference Manual

seg_id: 1 byte value
Range: $00..$7F

This is the segment identification code of the requested segment. The
caller can use this parameter to identify the type of information that the
segment will contain.

The highest four bits of the segid identify the owner of the segment:

Segjdrange Owner Contents

$00 to $0F SOS Kernel System code
$10to$1F Interpreter Interpreter data
$20 to $7F User User program and data

The memory system does not check this parameter to ensure that it is in
the proper range.

pages: 2 byte value/result
Range: $0001 ,.$FFFF

This is the the number of contiguous pages to search for. If no free space
is found that contains this many pages, then the memory system will
return in this parameter the size of the largest free space it can find; the
SEGRQDN error is also generated. A page count of $00 always returns
error BADPGCNT.

base: 2 byte result
Range: $0020..$0E9F

This is the the segment address of the beginning of the new segment.

limit: 2 byte result
Range: $0020..$0E9F

This is the segment address of the end of the new segment.

seg_num: 1 byte result
Range: $01..$1F

This is the the segment number of the segment granted. This number
must be used to identify the segment in subsequent calls to
CHANGE_SEG, RELEASE_SEG, or GET_SEG_INFO.

Memory Calls and Errors 79

Comments

FIND_SEG does not search the system banks $0F and $10.

Errors

■L

Segment request denied
Segment table full

The base and limit parameters both return $0000 if the segment is not
granted; even though pages returns the length of the largest available
segment, base and limit do not return its location.

$E1: SEGRQDN
$E2: SEGTBLFULL
$E5: BADSRCHMODE Invalid search mode parameter
$E7: BADPGCNT Invalid pages parameter ($00)

80 SOS Reference Manual

Memory Calls and Errors 81

11.1.3 CHANGE_SEG

This call changes either the base
or limit segment address of the
specified segment by adding or
releasing the number of pages
specified by the pages parameter.
If the requested boundary change
overlaps an adjacent segment or
the end of the memory, then the
change request is denied, error
SEGRQDN is returned, and the
maximum allowable page count is
returned in the pages parameter.

Memory Call $42

Required Parameters

seg_num: 1 byte value
Range: $01 ..$1F

This is the segment number of the segment to be changed.

change_mode: 1 byte value
Range: $00..$03

The change mode indicates which end (base or limit) of the segment to
change, and whether to add or release space at that end.

$00: Release from the base (decrease size)
$01: Add before the base (increase size)
$02: Add after the limit (increase size)
$03: Release from the limit (decrease size)

pages: 2 byte value/result
Range: $0001 ,.$FFFF

This is the number of pages to add to or release from the segment. If too
many pages are added to or removed from the segment, then the segment
is not changed, and the maximum number of pages that can be added or
removed in the requested change_mode is returned in this parameter,
along with a SEGRQDN error.

82 SOS Reference Manual

Comments

You cannot move both ends of a segment at once.

If the segment was granted by FIND_SEG, a CHANGE_SEG
operation will not heed the bank-crossing criterion that was used in
finding the segment. If you request a segment that does not cross a
bank boundary, then increase it with CHANGE_SEG, the larger
segment may cross a bank boundary.

Errors

$E1 SEGRQDN Segment request denied
$E3 BADSEGNUM Invalid segment number
$E6 BADCHGMODE Invalid change mode parameter

Memory Calls and Errors 83

11.1.4 GET_SEG_INFO

This call returns the beginning and
ending locations, size in pages, and
identification code of the segment
specified by seg_num.

Required Parameters

seg_num: 1 byte value
Range: $01 ..$1F

This returns the segment number of
an existing segment.

base: 2 byte result
Range: $0020..$109F

This returns the segment address of
the beginning of that segment.

limit: 2 byte result
Range: $0020..$109F

Memory Call $43

GET_SEG_INFO $43

0 $05

1 segnum
value

2
base
result

3

4
limit
result

5

6
pages
result

7

8 segjd
result

This returns the segment address of the end of that segment.

pages: 2 byte result
Range: $0001..$FFFF

This returns the number of pages contained by the segment.

segjd: 1 byte result
Range: $00..$7F

This returns the identification code of the segment. The highest four bits
of the segid identify the owner of the segment:

Seg id range Owner Contents

$00 to $0F SOS Kernel System code
$10to$1F Interpreter Interpreter data
$20 to $7F User User program and data

84 SOS Reference Manual

Errors

$E3: BADSEGNUM Invalid segment number

Memory Calls and Errors 85

n
H
■
■
■

■
■
H

11.1.5 GET_SEG_NUM

This call returns the segment
number of the segment, if any, that
contains the specified segment
address.

Required Parameters

seg_address: 2 byte value
Range: $0020..$109F

Memory Call $44

This is the segment address in
question.

seg_num: 1 byte result
Range: $01..$1F

This is the segment number of the segment that contains the specified
segment address.

Comments

You may make a subsequent call to GET_SEG_INFO with the resultant
segment number to determine the ownership of that segment.

Errors

$E0: BADBKPG Invalid segment address (bank/page pair)
$E4: SEGNOTFND Segment not found

■
■
II
Fl
II
H

86 SOS Reference Manual

Memory Calls and Errors 87

■
n
■
■

11.1.6 RELEASE_SEG Memory Call $45

This call releases the memory release_seg $45
occupied by the segment specified
by seg_num, by removing the 0
segment from the segment table.
The space formerly occupied by 1
the released segment is returned to
free memory. If seg_num equals
zero, then all nonsystem segments (those with segment identification
codes greater than $0F) will be released.

$01

segnum
value

Required Parameters

seg_num: 1 byte value
Range: $00..$1F

This is the segment number of the segment to be released. If seg_num is
$00, then all segments not owned by SOS are released.

Errors

$E3 BADSEGNUM Invalid segment number

88 SOS Reference Manual

11.2 Memory Ca// Errors

The errors below are generated by SOS memory calls. For other errors,
see Appendix D.

$E0: Invalid segment address (BADBKPG)

The segment address has an invalid bank number, page number, or both.

$E1: Segment request denied (SEGRQDN)

No segment can be created that meets the caller’s size and boundary
criteria.

$E2: Segment table full (SEGTBLFULL)

SOS can keep track of no more segments: existing segments must be
released or consolidated if more segments are needed.

(<0^) SOS can keep track of $1F segments.

$E3: Invalid segment number (BADSEGNUM)

The seg_num passed is not that of a currently existing segment.

$E4: Segment not found (SEGNOTFND)

For GET_SEG_NUM, no segment in the system contains the segment
address specified.

$E5: Invalid search mode parameter (BADSRCHMODE)

For FIND_SEG, the search_mode parameter is invalid (greater than $02).

$E6: Invalid change_mode parameter (BADCHGMODE)

For CHANGE SEG, the change mode parameter is invalid (greater
than $03).

$E7: Invalid pages parameter (BADPGCNT)

The pages parameter is invalid (equal to $00).

Utility Calls and Errors 89

90 12.1 Utility Calls
91 12.1.1 SET_FENCE
93 12.1.2 GET_FENCE
95 12.1.3 SET_TIME
97 12.1.4 GET_TIME
99 12.1.5 GET_ANALOG

103 12.1.6 TERMINATE
104 12.2 Utility Call Errors

90 SOS Reference Manual

12.1 Utility Calls

The following system calls deal with the system clock/calendar, the
event fence, the analog input ports, and other general system
resources.

$60: SET_ FENCE
$61: GET_>ENCE
$62: SET_ TIME
$63: GET_JTIME
$64: GET ANALOG
$65: TERMINATE

12.1.1 SET_FENCE Utility Call $60

This call changes the current value
of the user event fence to the value
specified in the fence parameter.

Required Parameters

SET_FENCE $60

0

1

$01

fence
value

fence: 1 byte value
Range: $00..$FF

This parameter contains the new value of the user event fence for the
operating system’s event mechanism. Events with priority less than or
equal to the fence will not be serviced until the fence is lowered.

Errors

No errors are possible.

92 SOS Reference Manual

Utility Calls and Errors 93

n
n

-

■

12.1.2 GET_FENCE Utility Call $61

This call returns the current value of
the user event fence.

Required Parameters
fence: 1 byte result

Range: $00..$FF

GET_FENCE$61

0

1

$01

fence
result

This parameter returns the current setting of the user event fence. Events
with priority less than or equal to the fence will not be serviced until the
fence is lowered.

Errors

No errors are possible.

SOS Reference Manual94

Utility Calls and Errors 95

12.1.3 SET_TIME Utility Call $62

This call sets the system clock to
the contents of a buffer located at
the specified address. If the system
has no functioning clock,
SET__TIME stores the contents of
the buffer as the last valid time, to
be returned on the next
GET_TIMEcail.

SET_TIME $62

0

1

2

time
pointer

Required Parameters

time: pointer

This is a pointer to an 18-byte buffer containing the current date and time.
The information is specified as an 18-byte ASCII string whose format is

YYYYMMDDXHHNNSSXXX

The meaning of each field is as below:

Field Meaning Minimum Maximum

YYYY: Year 1900 1999
MM: Month 00 or 01 12 (December)
DD: Date 00 or 01 28,30, or 31

X: Ignored
HH: Hour 00(Midnight) 23(11:00 p.m.)
NN: Minute 00 59
SS: Second 00 59

XXX: Ignored

For example, December 29,1980, at 9:30 a.m., would be specified by the
string “198012290093000000”.

96 SOS Reference Manual

Comments

On input, SOS replaces the first two digits of the year with “19” and
ignores the day of the week and the millisecond. SOS calculates the day
from the year, month, and date.

SOS does not check the the validity of the input data to make sure each
field is in the proper range. The clock makes several restrictions: it rejects
any invalid combination of month and date. The clock only accepts dates
in the range 1 ..30 if the month is 4,6,9, or 11; it only accepts dates in the
range 1 ..28 if the month is 2: February 29 is always rejected.

SET_TIME attempts to set the hardware clock, whether or not it is
present and functioning. It also stores the new time in system RAM as the
last known valid time; this time will be returned by all subsequent
GET TIME calls if the hardware clock is missing or malfunctioning.

The clock does not roll over the year.

The format of the SET_TIME string is the same as that of the GET_TIME
result, except that SET TIME ignores the day of the week and the
millisecond fields.

Errors

No errors are possible.

Utility Calls and Errors 97

n

n
R
II

n
n
n
n
R

■

R

12.1.4 GET_TIME

This call reads the time from the
system clock and returns it to the
buffer located at the specified
address. If the system has no
functioning clock, GET_TIME
returns the last known valid time.

Required Parameters

Utility Call $63

GET_TIME$63

0

1

2

$01

time
pointer

time: pointer

This is a pointer to an 18-byte buffer containing the current date and time.
The information is specified as an 18-byte ASCII string whose format is

YYYYMMDDWHHNNSSUUU

The meaning of each field is as below:

Field Meaning Minimum Maximum

YYYY: Year 1900 1999
MM: Month 00 or 01 12 (December)
DD: Date 00 or 01 28, 30, or 31

W: Day 01 (Sunday) 07 (Saturday)
HH: Hour 00 (Midnight) 23 (11:00 p.m.)
NN: Minute 00 59
SS: Second 00 59

UUU: Millisecond 000 999

n
n
R

■

n

For example, Friday, March 21,1980, at 1:27:41.001 p.m., would be returned
as“198003216132741001”.

Comments

If the hardware clock is not operational, the utility manager retrieves
the last known valid time from system RAM. If no last known valid time
is stored, GET_TIME returns a string of eighteen ASCII zeros:
“000000000000000000”.

98 SOS Reference Manual

SOS calculates the day of the week from the year, month, and date.

The clock will only generate dates in the range 1 ..30 if the month is 4,6,9,
or 11; it will only generate dates in the range 1 ..28 if month is 2: February 29
will never be generated by a system with a functioning clock. A system
without a functioning clock can return February 29 if that month and date
have been set by a SET TIME call.

The clock does not roll over the year.

You must ensure that the buffer pointed to by time can hold all eighteen
($12) bytes, to avoid overwriting other data.

Errors

No errors are possible.

Utility Calls and Errors 99

R
H
n
■

n
R

12.1.5 GET—ANALOG

This call reads the analog and
digital inputs from an Apple III
Joystick connected to port A or B
on the back of the Apple III.

Required Parameters

joy_mode: 1 byte value
Range: $00..$07

This parameter specifies the
joystick inputs to be read. For each
value of joy_mode, the following
inputs will be read:

Utility Call $64

0

1

2

3

4

GET—ANALOG $64

$02

joymode
value

JSn-B
result

w JSn-Sw
g result
*iS> JSn-X
.2. result

” JSn-Y”
result5

Joy_mode Port Buttons/Switches Horizontal Vertical

$00 B JS0-B, JS0-Sw — —
$01 B JS0-B, JS0-Sw JS0-X —
$02 B JS0-B, JS0-Sw — JS0-Y
$03 B JS0-B, JS0-Sw JS0-X JS0-Y

$04 A JS1-B, JS1-Sw — —
$05 A JS1-B, JS1-Sw JS1-X —
$06 A JS1-B, JS1-Sw — JS1-Y
$07 A JS1-B, JS1-Sw JS1-X JS1-Y

The names for these variables are those used in the Apple III Owner’s
Guide, Appendix C. These eight variables are returned by the
joy_status parameter.

100 SOS Reference Manual

joy status: 4 byte result
Range: $00000000..$FFFFFFFF

This 4-byte field is treated as one parameter by SOS. Here we
subdivide it into four 1-byte fields for clarity; n represents the
numbers of the joystick (1 or 2) as determined by the joy_mode
parameter.

JSn-B: 1 byte result
Range: $00..$FF

This digital output returns $00 if the button is off and returns
$FF if the button is on.

JSn-Sw: 1 byte result
Range: $00..$FF

This digital output returns $00 if the switch is off and returns $FF
if the switch is on.

JSn-X: 1 byte result
Range: $00..$FF

This analog output returns a value from $00 to $FF
corresponding to the horizontal position of the joystick. A
position that was not read (due to the joy mode parameter)
returns a byte of $00.

JSn-Y: 1 byte result
Range: $00..$FF

This analog output returns a value from $00 to $FF
corresponding to the vertical position of the joystick. A position
that was not read (due to the joy_mode parameter) returns a
byte of $00.

Utility Calls and Errors 101

Comments

An input device other than a joystick can be read, provided (a) it uses the
same pins for analog and digital inputs, and (b) each pin produces the
correct signals, as described in the Apple III Owner’s Guide.

Both buttons of the selected joystick are always read and returned.

Reading the analog inputs slows down the execution speed of this call
and should be avoided when unnecessary.

JSn-B, JSn-Sw, JSn-X, and JSn-Y all return results of $FF if no joystick is
attached to the port.

The XNORESRC error will be generated if an attempt is made to read Port
A and a device driver (such as the Silentype driver) has already claimed
the use of that port.

The parm_count is $02, not $05.

Errors

$25 XNORESRC Resource not available
$70 BADJMODE Invalid joystick mode

102 SOS Reference Manual

103Utility Calls and Errors■I

■
n
n
■
n

R
n
■
R
Fl
■
n

12.1.6 TERMINATE

This call clears memory, clears the
screen, and displays INSERT
SYSTEM DISKETTE & REBOOT in
40-column black-and-white text
mode on the screen. The system
then hangs, and waits for the user
to press CONTROL-RESET
and reboot.

Required Parameters

None

Utility Call $65

p

p

p

p

Comments

Only the SOS Call Block is shown for this call. Since this call has no
parameters, the parameter_count is $00. Thus the parameter Jist pointer
must point to a byte containing $00. The most convenient such byte is the
BRK opcode beginning the TERMINATE call, so this call customarily bites
its own tail.

Before issuing a TERMINATE call, the interpreter should close all open
files. This will ensure that all I/O buffers are written out, and all file entries
updated, while the necessary information still exists.

This call is the recommended way to leave a program. It provides a clean
exit to a program, and leaves no traces of it in memory for the user’s
examination. It can be used in conjunction with a copy-protection scheme
to protect a program from piracy. It also provides a hook that could be
used to return control to a future command interpreter.

Errors

No errors are possible. This is an excellent call for beginners.

104 SOS Reference Manual

12.2 Utility Call Errors

One error can be generated by one of the utility calls; other errors are
listed in Appendix D.

$70: Invalid Joystick Mode (BADJMODE)

The joy_mode parameter is greater than $07.

SOS Specifications 105

106 SOS Reference Manual

Version: SOS 1.1,1.2 and 1.3

Classification:

Single-task, configurable, interrupt-driven operating system.

File system—hierarchical, tree file structure.

Device-Independent I/O.

CPU Architecture:

Address enhanced 6502 instruction set.

Supports both bank-switched and enhanced indirect addressing.

Separate execution environments for user and SOS including
private zero and stack pages.

System Calls:

Based on 6502 BRK instruction, pointer, and value parameter
types.

Error codes returned via A register.

All other CPU registers preserved upon return.

Optional parameter lists for future expansion.

File Management System:

Hierarchical file structure.

Pathname prefix facility.

Byte-oriented file access to both di recto ry/user files and device
files.

Dynamic, non-contiguous file allocation on block devices.

Automatic buffering (current index block and data block).

Dynamic memory allocation of file buffers.

Block size (512 bytes).

File protection: rename/destroy/read/write access attributes.

File level assignment on Open.

107SOS Specifications

■

n
n
H
n
■
■

n
n

*
ii
n
ii
n

■
H
■
n

Automatic date/time stamping of files.

Automatic volume logging/swapping, supported by system
message center.

Multiple volumes per block device can be “open” simultaneously.

Sparse file capability:

maximum number of active volumes = 8

maximum disk size = 32 Mbytes

maximum user file size = 16 Mbytes

maximum file entries in volume directory = 51

maximum file entries in a subdirectory = 1663

file names — maximum 15 characters

pathnames — maximum 128 characters

File system calls:

CREATE READ

DESTROY WRITE

RENAME CLOSE

SET_FILE_INFO FLUSH

GET_FILE_INFO SET_MARK

VOLUME GET_MARK

SET_PREFIX SET_EOF

GET_PREFIX GET_EOF

OPEN SET_LEVEL

NEWLINE GET LEVEL

Device Management System:

Block and character device classes.

Standardized interface for block and for character devices.

All devices are named and configurable.

108 SOS Reference Manual

Support for synchronous, interrupt, and DMA-based I/O.

maximum number of devices = 24

maximum number of block devices = 12

Device system calls:

GET_DEV_NUM D_STATUS

D_INFO D_CONTROL

Memory/Buffer Management System:

All memory allocated as segments.

Supports maximum of 512 Kbytes RAM.

System buffers allocated and released dynamically.

System buffer checksum routine for data integrity.

Memory system calls:

REQUEST_SEG GET_SEG_INFO

FIND_SEG GET_SEG_NUM

CHANGE_SEG REL_SEG

Additional System Functions:

System clock/calendar
(year/month/day/weekday/hour/minute/second/ms).

Joysticks: reads X and Y axes, pushbutton, and switch.

TERMINATE call provides clean program termination and clears
memory.

System calls:

SET_TIME TERMINATE

GET TIME GET ANALOG

SOS Specifications 109

Interrupt Management System:

Receives hardware interrupts (IRQ, NMI) and system calls (BRK).

Hardware resource allocation and deallocation.

Dispatches to driver interrupt handlers.

Event Management System:

Priority-based event signaling.

Event handlers preempted by higher priority events.

Events with equal priorities process FIFO.

Event fence delays events with priority less than fence.

Event system calls:

SET_FENCE GET_FENCE

System Configuration:

Menu-driven system-configuration editor (System Configuration
Program).

Can add, remove, and modify drivers and can select the
keyboard-layout and system-character-set tables.

Standard Device Drivers:

Floppy disk (,D1, ,D2, .D3, .D4)

143,360 bytes (formatted) per volume.

Automatically reports mounting of a new volume.

Built into SOS kernel.

Console (.CONSOLE)

Interrupt-driven keyboard (supports type-ahead).

Configurable keyboard-layout table (via SCP).

Raw-keystroke and no-wait input modes.

Event handler supports anykey and attention character.

Optional screen echoing.

110 SOS Reference Manual

Console control modes:

video on/off
flush type-ahead buffer
suspend screen output
display control characters
flush screen output

Cursor positioning commands.

Viewport set, clear, save, and restore commands.

Horizontal and vertical scrolling.

Text modes: 24 x 80 and 24 x 40 B&W and 24 x 40 color
(normal and inverse).

Configurable system character set table (via SCP).

Character set can be changed under program control at
anytime.

Screen read command.

Graphics (.GRAFIX)

Displays graphical and textual information
simultaneously.

Graphics modes:
560 x 192 and 280 x 192 in B&W video.
280 x 192 and 140 x 192 in 16 colors.

Point-plotting and line-drawing commands using graphics
viewport and pen.

Raster block picture operations.

Color operator table, controls color overwrite.

Transfer modes allow binary operations on the drawing
color and the current screen color.

Allows use of either the system character set or an
alternate character set to display ASCII text on the
screen.

Single or dual graphics screens.

SOS Specifications 111

General purpose communications (.RS232)

RS-232-C interface.

Configurable data rates from 110 to 9600 baud.

Configurable protocols, including XON/XOFF, ETX/ACK,
and ENQ/ACK.

Interrupt-driven, buffered, bi-directional data transfer.

Hardware handshaking option.

Serial printer (.PRINTER)

RS-232-C interface.

Configurable data rates from 110 to 9600 baud.

Interrupt-driven and buffered (output only).

Hardware handshaking option.

Audio (.AUDIO)

64 volume levels.

Produces tones from 31 to 5090 Hz (over 7 octaves).

Duration range from 0 to 5 sec (increments of 1/60 sec).

112 SOS Reference Manual

kxxxxxxx\$JXXX^^^V>X<<XXXXXXX'X^

ExerSOS 113

ExerSOS

,x||xXXXXXXXXXXXXXXXXXXXXXXXXX\XXXXXXXXXX^XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX^X\XXX\XXXXXXXXXXXXXX^X^

8 g § $ $ 8 §
^X\XXXXXXXXXXXXX\XXXXX'XXXXXXXXXXXXXX'^^XX^<^»$^4^X^^SSS«S^«S^^

.XXXXX^XXXXX\XXXXXXXXXXXXXXXXXXXXXXXXXXXXX^XXX'SXXXX'XXX<XX'SXXX<XsXXxX^^

I I I I I I I I I I

S<^SSSSJ^^X<^^SSSSSSSSSX^S$^^SSSSSSSSSSS^S;W^^

n
n
n
n
n
ii
~~

114 B.1 Using ExerSOS
114 B.1.1 Choosing Calls and Other Functions
116 B. 1.2 Input Parameters
117 B.2 The Data Buffer
117 B.2.1 Editing the Data Buffer
118 B.3 The String Buffer
119 B.4 Leaving ExerSOS

II

II
n
n
n
■
ii
n
n

114 SOS Reference Manual

ExerSOS is a interactive BASIC program that lets you make SOS calls
from the keyboard without writing a special assembly-language
program to test each call. It is intended to let you try out calls to see
how they work. ExerSOS lets you choose a call from a menu, then
prompts you for each of the call’s input parameters, and gives you
the correct output parameters or error message.

B. 1 Using ExerSOS

To use ExerSOS, insert the ExerSOS disk into the built-in drive and
press CONTROL-RESET. After the introductory displays you will
see the Main Menu.

B.1.1 Choosing Calls and Other Functions

The Main Menu presents you with a choice of functions. Typing 0
will EXIT ExerSOS. The first 35 of these functions are SOS calls
(listed below by type). The remainder are special functions
available within ExerSOS. The full list of functions is

File Calls:

$C0:
$C1:
$C2:
$C3:
$C4:
$C5:
$C6:
$C7:
$C8:
$C9:
$CA:
$CB:
$CC:
$CD:

CREATE
DESTROY
RENAME
SET_FILE_INFO
GET_FILE_INFO
VOLUME
SET_PREFIX
GET_PREFIX
OPEN
NEWLINE
READ
WRITE
CLOSE
FLUSH

ExerSOS 115

$CE: SET_MARK
$CF: GET_MARK
$D0: SET_EOF
$D1: GET_EOF
$D2: SET_LEVEL
$D3: GET_LEVEL

Device Calls:

$82: D_STATUS
$83: D_CONTROL
$84: GET_DEV_NUM
$85: D_INFO

Memory Calls:

$40: REQUEST_SEG
$41: FIND_SEG
$42: CHANGE_SEG
$43: GET_SEG_INFO
$44: GET_SEG_NUM
$45: RELEASE_SEG

Utility Calls:

$60: SET_FENCE
$61: GET_FENCE
$62: SET_TIME
$63: GET_TIME
$64: GET ANALOG

ExerSOS Utilities:

$1: Display Directory
$2: Display Open Files
$3: Display Active Memory Segments
$4: Display/Edit Contents of Data Buffer

116 SOS Reference Manual

B. 1.2 Input Parameters

When you select a SOS call from the Main Menu, the display is replaced
by a split-screen menu showing the name of the call at the top. The left
half of the screen is used for typing input parameters to the call; the right
is used to show the resultant SOS call error and any output parameters.
You will then be prompted for each input parameter, following the
description of the call in the SOS Manual. If you wish to return to the Main
Menu, type a backslash (\^ and press RETURN.

All parameters have the same names as in this manual, and appear in
the same order as in the description of the SOS call in Volume 2. Pointer
parameters, however, are omitted, as all values and results are passed
interactively, rather than by building a table in memory and passing its
address.

In some cases, a range of legal values is displayed; if your entry falls
outside that range, you will be prompted again. For example, the first
prompt you encounter in the READ call is

ref num [0...255J -

If you respond to this with an out-of-range value, the prompt will be
repeated.

You may also type data in hexadecimal by proceeding a value with a
dollar sign ($). Some input fields have a fixed dollar sign: these fields
require hex input. SOS calls requiring no input display

[None]

before reporting the results of the call.

When typing an input parameter, you can use the ESCAPE key to edit
the input, as in BASIC.

Several SOS calls employ an optional parameter list along with a length
parameter. For those calls, ExerSOS asks you for the length and
selectively prompts or displays information as requested.

ExerSOS 117

B.2 The Data Buffer

ExerSOS maintains two buffers you should be aware of: the data buffer
and the string buffer. ExerSOS alone locates the 16K data buffer in
memory. All I/O operations (READ, WRITE) use the data buffer. Hence,
a READ call followed by a WRITE call will transfer bytes from one file
to another.

«n order to ensure the return of this 16K space to the system,
always exit ExerSOS through the Main Menu, never by typing
CONTROL-C. If you should accidentally exit ExerSOS, reboot
by pressing CONTROL-RESET.

B.2.1 Editing the Data Buffer

The Display/Edit function allows you to select any of the 64 256-byte
pages of memory occupied by the data buffer, and displays that page in
hex with the ASCII equivalents on the right side of the screen. You are
then placed in Edit mode with the cursor (denoted by matching “[..]”)
positioned in the upper-right corner. You can move the cursor through
the use of the four arrow keys.

You can alter the contents of a byte by typing a hex digit, (that is, 0..9,
A..F, a..f). Note that as you do so, the value you type is placed in the
low-order nibble of the target byte, and the value that was in the low-order
nibble moves to the high-order nibble. You may terminate the input to a
byte by pressing RETURN, which accepts the new value, or ESCAPE,
which restores the original value.

If you press ESCAPE while you are in the cursor-positioning phase, you
exit from Edit mode and have the choice of returning to the Main Menu
or displaying another page of the buffer.

118 SOS Reference Manual

B.3 The String Buffer

The string buffer is used by many of the calls as temporary storage any
time a pathname or device name is passed into or out of a SOS call.
Additionally, the D_STATUS and D__CONTROL calls use the string
buffer for the STATUS LIST and CONTROL LIST, respectively.

The following SOS calls require some further user input:

D_STATUS

In addition to the SOS-required input parameters, ExerSOS
prompts you for two more items. The first prompt,

lets you initialize the string buffer by typing Y, or leave its current
contents intact by typing N. Usually, you will initialize it, to make
sure no garbage from a previous call obscures your results.
However, in some cases, you may wish to make a status call, then
change something with a control call, then check the buffer with
a status call again: in such a case do not initialize the buffer.

The second prompt,

Amount of output

asks you how many bytes of the string buffer you wish to see. if
you specify more bytes than are in the status list, the remaining
bytes will be either zeros or garbage, depending on your response
to the “Initialize?” prompt.

D_CONTROL

After you specify the dev_num and control_code, ExerSOS allows
you to specify the control list from either of two places. If you
type a “0” to the “Length of input” prompt, the call is made from
the current value of the string buffer. If you respond to the prompt
with a value larger than 0, you are prompted for each byte of
the control list. The resultant string is moved into the string buffer.

B.4 Leaving ExerSOS

To leave ExerSOS, return to the Main Menu and type 0. You will be asked
to confirm your intention: type Y to exit (any other reply will return you to
the Main Menu). ExerSOS will drop into BASIC, and you will be able to run
another BASIC program, or reboot by pressing CONTROL-RESET If you
leave ExerSOS inadvertently, as by typing CONTROL-C, you should
reboot. If you try to RUN the program without rebooting, you will have
lost the 16K space allocated to the data buffer.

----- _ . __

120 SOS Reference Manual
„ . . - .' ' ? ' / ’ ’ ; J?s. i-ix'

j":. i ••.•••-'-y. -v .. . ' - „ -• . - , a O. ■•-'

‘ / ~ v' ■' - " < ' - ‘ > ’ - ■

Make Interp 121

Makelnterp

v. v.-. w\' ■. ••• -. <■

S SSSS S S <■:•:■ S

122 SOS Reference Manual

Makelnterp is a program that takes an assembly-language code file
produced by the Apple III Pascal Assembler and converts it to the proper
format for a bootable SOS.INTERP file. If you are writing an interpreter,
this makes it unnecessary for you to know the details of interpreter file
format, and protects you from future changes in this format.

To use Makelnterp, boot Pascal and insert the ExerSOS disk into, say,
.D2. Now execute (that is, type X)

.D2/MAKEINTERP.CODE

Then type the input pathname, the name of the interpreter code file, for
example,

.D2/INTERP.CODE

and the output pathname, say,

.D2/SOS.INTERP

As the disk spins, you see this message displayed:

Converting Files

and returns you to the Pascal command line.

When the conversion is complete, Makelnterp displays the message

All pathnames must be complete, with suffix. If you type any invalid input,
you will have to execute the program again.

Error Messages 123

Error Messages

124
124
125
125
126
126
126
128

D.1 Non-Fatal SOS Errors
D.1.1 General SOS Errors
D.1.2 Device Call Errors
D.1.3 File Call Errors
D.1.4 Utility Call Errors
D.1.5 Memory Call Errors

D.2 Fatal SOS Errors
D.3 Bootstrap Errors

124 SOS Reference Manual

SOS detects two types of errors:

• Non-fatal SOS errors, occurring during a SOS call, that are
detected and flagged;

• Fatal SOS errors, occurring during a SOS call or interrupt
sequence, that signal such a substantial irregularity that the
system cannot continue to operate.

In addition, the SOS bootstrap loader detects bootstrap errors, which
occur only when the system is starting up.

The reporting mechanism for non-fatal SOS errors is discussed in
Volume 1, section 8.4. The error code is returned in the accumulator after
a SOS call: an error code of $00 means no error was encountered in
the call. The error code is normally used by the interpreter to display a
message to the user, to repeat an operation, or to take some other action.

Bootstrap errors and fatal errors occur when an error condition is so
critical that no recovery is possible. These errors cause their own
messages to be displayed on the screen, as no interpreter is in place
to interpret them. These errors are discussed in detail in section D.3.

D.1 Non-FatalSOSErrors

Explanations of the general system errors are given in section 8.4 of
Volume 1. Explanations of the other non-fatal system errors are given
in Volume 2. The list below, numerically ordered, is for easy reference.
Three things are listed for each error: the error number, a suggested
name for the assembly-language routine handling the error, and a
suggested error message for the interpreter to display on the screen.

D. 1.1 General SOS Errors
(See section 8.4)

$01: BADSCNUM
$02: BADCZPAGE
$03: BADXBYTE
$04: BADSCPCNT
$05: BADSCBNDS

Invalid SOS call number
Invalid caller zero page
Invalid indirect pointer X-byte
Invalid SOS call parameter count
SOS call pointer out of bounds

Error Messages 125

D. 1.2 Device Call Errors
(See section 10.2)

$10: DNFERR
$11:BADDNUM
$20: BADREQCODE
$21: BADCTLCODE
$22: BADCTLPARM
$23: NOTOPEN
$25: NORESRC
$26: BADOP
$27: IOERROR
$2B: NOWRITE
$2E: DISKSW
$30..$3F:

Device not found
Invalid device number
Invalid request code
Invalid status or control code
Invalid control parameter list
Device not open
Resources not available
Invalid operation
I/O error
Device write-protected
Disk switched
Device-specific errors

D. 1.3 File Call Errors
(See section 9.2)

$40: BADPATH
$41:CFCBFULL
$42: FCBFULL
$43: BADREFNUM
$44: PATHNOTFND
$45: VNFERR
$46: FNFERR
$47: DUPERR
$48: OVRERR
$49: DIRFULL
$4A: CPTERR
$4B: TYPERR
$40: EOFERR
$4D: POSNERR
$4E: ACCSERR
$4F: BTSERR
$50: FILBUSY
$51:DIRERR
$52: NOTSOS
$53: BADLSTCNT
$55: BUFTBLFULL

Invalid pathname syntax
Character File Control Block full
Block File or Volume Control Block full
Invalid file reference number
Path not found
Volume not found
File not found
Duplicate file name
Overrun on volume
Directory full
Incompatible file format
Unsupported storage type
End of file would be exceeded
Position out of range
Access not allowed
Buffer too small
File busy
Directory error
Not a SOS volume
Length parameter invalid
Buffer table full

126 SOS Reference Manual

$56: BADSYSBUF
$57: DUPVOL
$58: NOTBLKDEV
$59: LVLERR
$5A: BITMAPADDR

Invalid system buffer parameter
Duplicate volume
Not a block device
Invalid level
Invalid bit map address

D. 1.4 Utility Call Errors
(See section 12.2)

$70: BADJOYMODE Invalid joy mode parameter

D. 1.5 Memory Call Errors
(See section 10.2)

$E0: BADBKPG
$E1:SEGRQDN
$E2: SEGTBLFULL
$E3: BADSEGNUM
$E4: SEGNOTFND
$E5: BADSRCHMODE
$E6: BADCHGMODE
$E7: BADPGCOUNT

Invalid segment address
Segment request denied
Segment table full
Invalid segment number
Segment not found
Invalid search mode parameter
Invalid change mode parameter
Invalid pages parameter

D.2 Fatal SOS Errors

If SOS encounters an internal error from which it cannot recover, it
displays an error message (including the code number of the error that
occurred) on the screen, beeps the speaker, and hangs. The only
recovery possible is to reboot.

The fatal error codes and conditions are listed below. The phrase
following the number is a convenient name for the error, but no
interpreter will be able to display it to the user, as SOS will not be
around to help.

$01: Invalid BRK (BADBRK)

A BRK software interrupt was encountered within SOS. As SOS is not
reentrant, it is not allowed to make SOS calls to itself; making such a call
is an unrecoverable error and means that the memory region containing
SOS has been scrambled.

$02: Invalid interrupt (BADINT)

An interrupt occurred that cannot be acknowledged by SOS. The 6502’s
IRQ or NMI line was pulled down, but either polling did not reveal the
device that performed the interrupt, or no device driver had claimed that
interrupt.

$04: Invalid NMI (NMIHANG)

A request was made for SOS to lock the RESET/NMI key, but a device
is currently attempting to perform a NMI interrupt. If the interrupt is not
granted and handled within a short time after the request to lock NMI was
made, this error will occur.

$05: Event queue overflow (EVQOVFL)

More events (see Chapter 6) have occurred than have been handled.
Possibly the event fence is set too high, and few events are being handled.

$06: SOS stack overflow (STKOVFL)

The SOS stack has been pushed to more than 256 bytes, and the data
at the bottom of the stack have been overwritten.

$07: Invalid control or status request (BADSYSCALL)

The device system has detected an invalid control or status request.

$08: Too many drivers (MCTOVFL)

Too many device drivers have been created for SOS to keep track of.

$09: Memory too small (MEM2SML)

The Apple Ill’s memory is too small for SOS to operate in; that is, less
than 128K bytes.

128 SOS Reference Manual

$0A: Buffer Control Block damaged (VCBERR)

The file system’s Buffer Control Block has been damaged due to a
memory failure.

$0B: File Control Block damaged (FCBERR)

The file system’s File Control Block has been damaged due to a
memory failure.

$0C: Invalid allocation blocks (ALCERR)

Allocation blocks are invalid.

$0E: Pathname too long (TOOLONG)

A pathname supplied or internally generated contains more than 256
characters. This can result from concatenating a long prefix to a long
filename.

$0F: Invalid buffer number (BADBUFNUM)

An internal buffer allocation request has supplied an invalid buffer
number.

$10: Invalid buffer size (BADBUFSIZ)

An internal buffer allocation request has supplied an invalid buffer size.

D.3 Bootstrap Errors

If an error occurs during the bootstrap operation, an error message is
displayed (in uppercase inverse characters) in the middle of the video
screen, the speaker beeps, and the system hangs. Bootstrap errors are
not SOS errors, as they occur before SOS has started running: for this
reason, they are not numbered. Any bootstrap error is a fatal error: you
must insert a proper boot diskette, then hold down the CONTROL key
and press the RESET button to reboot.

M

The following errors can be produced during a bootstrap operation:

DRIVER FILE NOT FOUND

There is no file named SOS.DRIVER listed in the volume directory of the
boot disk. SOS cannot operate without device drivers, and the drivers
must be stored in a file with this name in the volume directory of the disk.

DRIVER FILE TOO LARGE

The SOS.DRIVER file is too large to fit into the system's memory along
with the interpreter. Use the System Configuration Program to remove
some drivers from this file.

EMPTY DRIVER FILE

The SOS.DRIVER file contains no device drivers. SOS requires at least
one device driver, .CONSOLE, to operate.

INCOMPATIBLE INTERPRETER

The interpreter is either too large or specifies a loading location that
conflicts with SOS. This error usually occurs when trying to load an older
interpreter with a newer version of SOS.

INTERPRETER FILE NOT FOUND

There is no file named SOS.INTERP listed in the volume directory of the
boot disk. SOS cannot operate without an interpreter, and the interpreter
must be stored in a file with this name, in the volume directory of the disk.

INVALID DRIVER FILE

The SOS.DRIVER file is not in the proper format for a driver file. Make
sure that the file was created by the System Configuration Program or
obtained from a valid Apple III boot disk.

I/O ERROR

The loader encountered an I/O error while trying to read the kernel,
interpreter, or driver file from the disk in the Apple Ill’s internal disk drive.
Make sure the correct disk is properly inserted in that drive.

130 SOS Reference Manual

KERNEL FILE NOT FOUND

No file named SOS.KERNEL is listed in the volume directory of the boot
disk. The files SOS.KERNEL, SOS.INTERP, and SOS.DRIVER must all be
present in the volume directory of a disk to be booted.

ROM ERROR: PLEASE NOTIFY YOUR DEALER

Your Apple 111 contains an older version of the bootstrap ROM that is not
supported by this version of SOS. Your Apple dealer should be able to
replace the ROM at no cost. If you receive this message, please contact
your dealer or nearest Apple Service Center.

TOO MANY BLOCK DEVICES

The SOS.DRIVER file contains too many device drivers for block devices.
Use the System Configuration Program to remove some of the block
device drivers from this file.

TOO MANY DEVICES

The SOS.DRIVER file, while small enough to fit into memory, contains
too many device drivers for SOS to keep track of. Use the System
Configuration Program to remove some drivers from this file.

Data Formats of Assembly-Language Code Files 131

132 E.1 Code File Organization
134 E.2 The Segment Dictionary
135 E.3 The Code Part of a Code File
136 E.3.1 The Procedure Dictionary
136 E.3.2 Procedures
136 E.3.3 Assembly-Language Procedure Attribute Tables
138 E.3.4 Relocation Tables
138 E.3.4.1 Base-Relative Relocation Table
139 E.3.4.2 Segment-Relative Relocation Table
139 E.3.4.3 Procedure-Relative Relocation Table
139 E.3.4.4 Interpreter-Relative Relocation Table

132 SOS Reference Manual

Interpreters can load additional code modules. When you write an
interpreter, you may want to make these code modules relocatable.
This appendix describes the relocation information generated by the
Apple III Pascal Assembler.

Appendix E is derived from the Apple III Pascal Technical Reference
Manual. Read that manual if you want more detailed information.

Most of the information about assembly-language code files described
in the Apple III Pascal Technical Reference Manual is addressed to Pascal
programmers. However, if you want to use Pascal Assembler code files
when you write an interpreter, you need to deal with only two general
areas: the overall organization of the code file, and the data structures
generated for various psuedo-opcodes by the Pascal Assembler.

E. 1 Code File Organization

An assembly-language code file consists of a segment dictionary and a
code part, as shown in Figure E-1:

Data Formats of Assembly-Language Code Files 133

n
■
n

n
n

ii
ii
H
n

■
■

■
■

segment
b ock 0 dictionary

first and
only code
segment

block 1

block 2 C°d®
part

/

z linker
/ information y

(unused) z

Figure E-1. An Assembly-Language Code File

The first block of a code file generated by the Pascal Assembler is in the
standard format for block 0 of a Pascal code file; this block is called the
segment dictionary. The remaining blocks of the file constitute the code
part of the code file, which is a single code segment in this kind of file. The
code part is followed by linker information: in an assembly-language code
file, this information is unused.

Be especially careful in reading this section: words (two bytes of
K—data) are used as well as bytes. Be sure you know which type

each number refers to.

134 SOS Reference Manual

E.2 The Segment Dictionary

Since the code part is a single segment, most of the information in the
segment dictionary is unused. Figure E-2 shows the information that is
used.

low bytehigh byte

low addresses

byte 1
unused

byte 0 word 0

byte 3 byte 2 word 1

byte 5
CODEADDR = 1
(relative block number)

(segment 1)
byte 4 word 2

byte 7
CODELENG
(in bytes) byte 6 word 3

z unused

byte 512 byte 511 word 255

high addresses

Figure E-2. A Segment Dictionary

Two 2-byte fields in this block are relevant when you write a module
loader. The first starts at byte 4 and is the starting block number
(relative to the beginning of the file) of the code generated by the Pascal
Assembler; call this CODEADDR, because that is the field name in the
Pascal declaration. The second starts at byte 6 and is the length, in bytes,
of the code; call it CODELENG, for the same reason.

Your loading routine should begin loading at the relative block number
(usually 1) indicated by CODEADDR, and should load the number of
bytes indicated by CODELENG.

Data Formats of Assembly-Language Code Files 135

n

E3 The Code Pari of a Code File

Following the segment dictionary is the code part, which contains the
procedure dictionary and the procedures themselves. This is
diagrammed in Figure E-3.

byte
CODELENG -2

high addresses
high byte low byte

byte0

low addresses

Figure E-3. The Code Part of a Code File

136 SOS Reference Manual

E.3.1 The Procedure Dictionary

The low byte of the last word of the procedure dictionary is at the address
CODELENG-2; the structure grows down toward lower addresses, as
shown in Figure E-3. To decipher the structure, look at the word whose
location is calculated by CODEADDR * 512 + CODELENG-2. The low
byte should contain 1. The high byte tells you the number of procedures
in the code file. Each use of the psuedo-opcodes .PROC or .FUNC
increments this number. Below this word is a sequence of words that
contain self-relative pointers to the last word of each procedure in the
code file.

A self-relative pointer contains the absolute distance, in bytes, between
the low byte of the pointer and the low byte of the word to which it points.
To find the address referred to by a self-relative pointer, subtract the value
of the pointer from the address of its location.

The number of a procedure is an index into the procedure dictionary:
the nth word in the dictionary (counting down from higher addresses)
contains a pointer to the top (high address) of the code of procedure
number n. As 0 is not a valid procedure number, the 0th word of the
dictionary is used to store a Pascal-specific descriptor (usually 1) and
the number of procedures in the code file (as described above).

E.3.2 Procedures

Each procedure consists of two parts: the procedure code, and the
procedure attribute table. The procedure code is contained in the lower
portion of the procedure and grows upward toward the higher
addresses.

E.3.3 Assembly-Language Procedure
Attribute Tables

A procedure’s attribute table provides information needed to execute
the procedure. Procedure attribute tables are pointed to by entries
in the procedure dictionary of each code file.

Data Formats of Assembly-Language Code Files 137

The format of the attribute table of an assembly-language procedure
is illustrated in Figure E-4.

The other type of attribute table is described in the Apple III Pascal
Technical Reference Manual.

high addresses
high byte low byte

RELOCSEG PROCEDURE
NUMBER NUMBER = 0

ENTER IC (pointer to ____
start of procedure code)

number of pointers (n)

base-relative
relocation table

(n self-relative pointers)

number of pointers (m)

segment-relative
relocation table

(m self-relative pointers)

number of pointers (p)

self-relative
relocation table

(p self-relative pointers)

number of pointers (q)

interpreter-relative
relocation table

(q self-relative pointers)

low addresses

Figure E-4. An Assembly-Language Procedure Attribute Table

138 SOS Reference Manual

The highest word in the attribute table of an assembly-language
procedure always has 0 in its PROCEDURE NUMBER field. This 0
can be used as a flag to indicate to your loading routine that relocation
references may need changing to agree with the other information
in the attribute table. The RELOCSEG NUMBER field must contain 0.

The second-highest word of the attribute table is the ENTER IC field: a
self-relative pointer to the first executable instruction of the procedure.
Following this are four relocation tables; from high address to low
address, they are base-relative, segment-relative, procedure-relative,
and interpreter-relative.

E.3.4 Relocation Tables

A relocation table is a sequence of records that contain information
necessary to relocate any relocatable addresses used by code within the
procedure. These addresses must be relocated whenever the code file
containing the procedure is loaded into or moved within memory.

The format of all four relocation tables is the same: the highest word
of each table specifies the number of entries (possibly 0) that follow
at the lower addresses in the table. The remainder of each table contains
the one-word self-relative pointers to locations in the procedure code
that must be changed by the addition of the appropriate relative
relocation constant, which is known to your interpreter when the code
is loaded.

E.3.4.1 Base-Relative Relocation Table

Every reference to a label associated with the psuedo-opcodes
.PUBLIC and .PRIVATE generates an entry into this table. In the Pascal
environment, these opcodes flag references to data global to the Pascal
program.

Data Formats of Assembly-Language Code Files 139

n
n
■
n
n
n
n
■
H
n
■
n
■

n
n
n
■

H
■

H

E.3.4.2 Segment-Relative Relocation Table

References to labels associated with .REF generate segment-relative
relocation entries. The offsets in this table are relative to the beginning
of the code portion of the code file: the address of the lowest byte of
the code module is added to each of the addresses pointed to in the
relocation table. Additionally, references to .PROC or .FUNC names
generate entries into this table.

E.3.4.3 Procedure-Relative Relocation Table

Addresses pointed to by the procedure-relative relocation table must
be relocated relative to the lowest address of the procedure. The address
of the lowest byte in the procedure must be added to the contents of
the words pointed to in the relocation table. The relevant Assembler
directives are .BYTE, .WORD, .BLOCK, and .ASCII. Additionally, any
non-relative reference (that is, JMP or LDA, but not BNE or BCS)
generates an entry into this table.

E.3.4.4 Interpreter-Relative Relocation Table

Entries into this table are generated by references to labels defined
by the .INTERP psuedo-opcode. The Pascal System uses this to index
into a jump table in the interpreter.

140 SOS Reference Manual

Bibliography 141

■
These books explain 6502 assembly-language programming:

Zaks, Rodnay. Programming the 6502. Berkeley: Sybex, 1978.

Bibliography

These manuals, in addition to the present one, explain the workings
of the Apple III and its system software:

Leventhal, Lance A. 6502 Assembly Language Programming.
Berkeley: Osborne/McGraw-Hill, 1979.

Scanlon, Leo J. 6502 Software Design. Indianapolis:
Howard W. Sams & Co., 1980.

Apple Business BASIC Reference Manual (Volumes 1 and 2).
Cupertino, Calif.: Apple Computer, 1981.

Apple III Owner’s Guide. Cupertino, Calif.: Apple Computer,
1982.

Apple III Pascal: Introduction, Filer, and Editor. Cupertino, Calif.:
Apple Computer, 1981.

Apple III Pascal: Program Preparation Tools. Cupertino, Calif.:
Apple Computer, 1981.

Apple III Pascal Programmer’s Manual (Volumes 1 and 2).
Cupertino, Calif.: Apple Computer, 1981.

Apple III SOS Device Driver Writer’s Guide. Cupertino, Calif.:
Apple Computer,Inc., 1982.

Apple III Standard Device Drivers Manual. Cupertino, Calif.:
Apple Computer, 1981.

142 SOS Reference Manual
■

Page references in Volume 2 are shown in square brackets [

absolute
code 120
mode 29
modules 143
or relocatable format 143

access 63,68,81,84, 88, 90, [11],
[18]

data 10,27,29-32
path(s) 52

information 64-66
maximum number of 53
multiple 52

techniques 27-38
accessing

a logical device 41
zero page and stack, warning

17
ACCSERR [55]
accumulator 110
ADC 31
address(es) 15

bank-switched 10,12,30,32
bus 10
conversion 25,32-35

example 122

current-bank 12,38
extended 13,38

notation 15
extension, pointer 154-159
invalid 13
limit 122
notation

bank-switched 15
extended 15
segment 23-27

of blocks 96,97
of event handler 108
relocatable [138]
risky 15
risky regions 32
S-bank 12,38
segment 24,38

notation, S-bank 25
three-byte 13
two-byte 12

addressing
bank-switched memory 10-13,

30- 31
enhanced indirect 10,13-16,

31- 32
indirect-X 13
indirect-Y 13

144 SOS Reference Manual

modes 10-16
enhanced 8

module 27-29
normal indirect 14
restrictions 15
subroutine 27-29

ALCERR [128]
algorithms 32

reading a directory file 91 -92
incrementing a pointer 36-37
sample 27

allocate memory 25
allocation 7,23

of a segment of memory 121
scheme, block 95

analog inputs 113
AND 31
Apple 111, overview of 3-8
Apple III Pascal Assembler 145,

[132], [134]
Apple III Processor xvii
arming events 108,125
.ASCII [139]
ASCII equivalents [117]
Assembler, Apple Pascal 145,

[132], [134]
assembly language 5

codefile(s) [131-139]
data formats for relocatable

146
module 19,118,143-146

linking 145
loading 145

procedure [136]
attribute tables [136], [137]

programming xvii
asynchronous operations 5

of device drivers 104
attribute table [136], [138]

assembly-language procedure
[136]

format of [137]
procedure [136]

.AUDIO [111]
audio [111]
aux type 64,88, [5], [14], [19]

B
B field 14
backup bit 90, [12], [18]
Backup III 90, [13]
BADBKPG [88]
BADBRK [127]
BADBUFNUM [128]
BADBUFSIZ [128]
BADCHGMODE [88]
BADCTL [71]
BADCTLPARM [71]
BADCZPAGE 161
BADDNUM [71]
BADINT [127]
BADJMODE [104]
BADLSTCNT [56]
BADOP [72]
BADPATH [53]
BADPGCNT [88]
BADREFNUM [54]
BADREQCODE [71]
BADSCBNDS 161
BADSCNUM 160
BADSCPCNT 161
BADSEGNUM [88]
BADSRCHMODE [88]
BADSYSBUF [56]
BADSYSCALL [127]
BADXBYTE 161
BCBERR [128]
bank

$0 16
current 12
highest 11

switchable 15

u

Index 145

number 15
pair 13,14

highest 15
part of segment address 25
register 11,19,28

restoring contents of 31
switchable 11

bank-pair field 14
bank-switched address 10,12,

30,32
as intermediate form 32
notation 15

bank-switched memory
addressing 10-13,30-31

bank-switched notation 23
bank-switching 27,28,30

for data access 30
for module execution 30
restrictions 28

base 23,122, [43], [48], [75], [78],
[83]

BASE 122
base-relative relocation table

[138]
BASIC 118,143

and Pascal modules 145
interpreter 145
program 145

BCS [139]
bibliography [141]
bit

backup 90, [12], [18]
destroy-enable [12], [18]
enhanced-addressing 14
map 54
read-enable [12], [18]
rename-enable [12], [18]
write-enable [12], [18]

bit map pointer 82
BITMAPADR [56]
.BLOCK [139]

block(s) 77
addresses of 96,97
allocation

for sparse files 98
scheme 95

altering configuration 46
call 148-149, [x]
configuration 43

altering 46
data 93,96
device 8,40,76

logical 53
status request $00 [60]

device information (DIB) 43
DIB configuration 43
file 50-56,62

control 64
structure of 50-51

index 93,94
key 77,82,93,97
logical 77
master index 94,96,97
maximum index 94
on a volume 77
SOS call [103]
subindex 94,96
total 45,82

blocks used 63,87, [19]
BNE "[139]
bootstrap

errors [128]
loader 77,93

BRK 149
instruction 8

BTSERR [55]
buffer

data 50, [117]
editing [117]

I/O 50
space, for drivers 21
string [117], [118]

BUFTBLFULL [56]

146 SOS Reference Manual

.BYTE [139]
byte 99, [133]

extension 14,31 (See also
X-byte)

locating in a standard
file 98-99

numbering 51
order of pointers 79
position, logical 98

call(s)
block 148-149, [x]

SOS [103]
choosing [114]
coding TERMINATE 131
D_CONTROL 128
device 46-47, [58-71]

errors [71-72]
management 5

errors
device 160, [71-72], [125]
file 160, [53-56], [125-126]
memory 160, [88]
utility 160, [104], [126]

file 69-73, [2-53]
errors [53-56]
management 5

FIND_SEG 30
form of the SOS 160
memory 25-27, [74-87]
errors [88]
management 5
OPEN 128
REQUEST_SEG 30
SOS 8

error reporting 160
form of a 148-154
types of 148

utility [90-103]
errors [104]
management 5

call num 149, [xi]
capacity of a file, maximum 94
carry 15
CFCBFULL [53]
changing device

name 46
subtype 46
type 46

changing slot number 46
changejnode [81]
CHANGE_SEG 26, [81-82]
character

device 8,40
control code $01 [64]
control code $02 [64]
status request $01 [60]
status request $02 [61]

file(s) 50-56,57
structure of 50-51

line-termination 67
newline 67
null (ASCII $00) 97
streams 40
termination 67

circumvention of programming
restrictions 3

clock 112-113, [95], [97], [98]
rate 19
system 112

CLOSE 66,68, 72, 90, [39-40]
closed files 52-53
closing files before TERMINATE

[103]
CMP 31
code

file(s) 145
data formats of relocatable

assembly-language 146
organization [132]
assembly-language [131-139]
code part of [135]

fragments, examples xiv

L.

interpreter, executing 10
part of a code file 119,121,

[132], [135]
segments, executing 27
sharing 44
procedure [136]

code length 120
CODEADDR [134]
CODELENG [134]
colon 15
command interpreter [103]
common code 44
common file structure 3
common foundation for

software 3
defined 2

communicating with the
device 42

comparing two pointers 37-38
compatibility with future

versions 18
conditions for enhanced indirect

addressing 31
configuration block 43

alter 46
DIB 43

conflicts
between interrupts 104
with zero page 16

.CONSOLE 66,105,108,125,
[109]

console 40
constant, relocation [138]
control

block, file 64
flow of 27
transfer 28

CONTROL-C [117]
CONTROL-RESET [117]
controlcode [63]

$01, character device [64]
$02, character device [64]

controllist [63]
conversions 32
copy-protection [103]
copying sparse files 98
CPTERR [55]
CPU 104
CREATE 68, 69, 90, 98, [3-6]
creating interpreter files 143
creation date and time 64,81,84,

88,89-90
field 89-90

current
bank 12
direct pointers to 156
directory 62
position marker 51

current-bank
address 12,38
form 13

cylinders 77

D
,D1 [109]
,D2 [109]
,D3 [109]
,D4 [109]
D_CONTROL 45,47,108,125,

128, [63-64], [118]
D_INFO 43,45,47, [67-71]
D__STATUS 45,46, [59-61], [118]
data

access 10,27,29-32
bank-switching for 30

and buffer storage 19
block 93,95,96
buffer 50, [117]

editing [117]
formats of relocatable

assembly-language code
files 146

in free memory 30

148 SOS Reference Manual

data block 99
data’buffer [35], [37]
date and time

creation 64,81,84,88,89-90
format 90
last mod 64,88,89-90, [14],

[19]
decimal numbers xix
decimal point xix
DESTROY 68,69, [7-8]
destroy-enable bit [12], [18]
detecting an event 105
dev name 43,60, [23], [65], [67]
devnum 43, [59], [63], [65], [67]
devjype 44,45, [68]
device(s) 8,40-42

adding a 46
block 8,40
call(s) 46-47

errors 160, [125]
changing name of 46
character 8,40
communicating with the 42
control information 45
correspondence

logical/physical 54
special cases of 54

defined as logical device 54
driver(s) 5,41,77,104,107,

108,125
asynchronous operation of

104
environment 20-21
errors, individual 160
graphics 16
standard [109-111]
memory placement 21

independence 7,67
information 43-44

block (DIB) 43
input 40

logical 40
block 53

management calls 5
multiple logical 54
name(s) 41 -42,44,50,55,60

illegal 42
legal 42
syntax 42

number 44
operations on 45-46
output 40
peripheral 8,104
physical 40
random-access 7
removing a 46
requests 50
sequential-access 7
status information 45
subtype 44

changing 46
type 44

changing 46
device-independent I/O 67
DIB

configuration block 43
header 43

dictionary 8
current 62
entry 62

procedure [135], [136]
error (DIRERR) [55]
file 57-58

format(s) 78-92
header 78

storage formats 76
segment [132], [134]
volume 54,57,78

digit(s) 42,56
hexadecimal 12

direct pointer 154,155
to S-bank locations 155

directory file, reading a 91-92

Index 149

DIRERR [55]
DIRFULL [55]
disarming events 108
Disk III driver 41
disk drives 40
disk, flexible 42,77,93
DISKSW [72]
dispatching routine 28
displacement [43], [48]
Display/Edit function [117]
DNFERR [71]
dollar signs xviii, xix
driver

device See device driver
module 41

placement of 44
DRIVER FILE NOT FOUND [129]
DRIVER FILE TOO LARGE [129]
DUPERR [54]
DUPVOL [56]

E
E-bit 14
editing data buffer [117]
EMPTY DRIVER FILE [129]
empty file 65
end-of-file marker See EOF
enhanced

addressing bit 14
addressing modes 8
indirect addressing 10,13-16,

27,30,31-32
conditions for 31

ENTERIC [138]
entries_per_block 82,85,92
entry (entries) 86

active 86
directory 62
FOB 53,62
format compatibility 91
inactive 86

points 145
storage formats of 76

entryJength 81,84,92
environment

attributes 19
execution 16-22
interpreter 18-19
SOS device driver 20-21
SOS Kernel 19-20
summary 22

EOF 51,53,63, 64-65,68,87, 89,
94, 95,96, 97,98, [5], [19], [49]
limit 94
movement of

automatic 65
manual 65-66

updating 65
EOFERR [55]
EOR 31
error(s) [124]

bootstrap [128]
device call [125]
file call [125]
messages [123-130]
numbers range 160
reporting, SOS call 160
SOS

fatal [124], [126]
general [124]
non-fatal [124]

utility call [126]
event(s) 5,104-115

any-key 105
arming, example 129
arming and response 105,108,

125
attention 105
detecting an 105
disarming 108
existing 108
fence 106,109-110

150 SOS Reference Manual

handler(s) 5,107,110-111,125
address of 108
examples 129

handling 106,107
system status during 111

identifier (ID) 108
mechanism, sample 126,129,

139
priority 105,108
processing 106
queue 106,108-109

order 109
overflow [127]

summary of 112
EVQOVFL [127]
examples

code fragments xviii
sample programs xviii

executing
code segments 27
interpreter code 10

execution
environment 16-22
speed 19

ExerSOS [113-119]
EXFN 145
extended to bank-switched
address conversion 34-35
extension byte 14,31 (See also

X-byte)
extension, pointer address 154
EXTERNAL PROCEDURE 145
eye symbol xv

FCB 52
entry 53,62

FCBERR [128]
FCBFULL [54]
fence [91], [93]
fence, event 106, [91], [93]

field(s)
formats 89-92
bank-pair 14
pointer 79

FIFO (first-in, first-out) 109
FILBUSY [55]
file(s) 7-8,52

assembly-language code [133]
block 50-56,62

allocation for sparse 98
call(s) 69-73, [2]

errors 160, [125]
character 50-56,57
closed 52-53
closing before TERMINATE

[103]
code 145

part of a code [135]
control block 64
copying sparse 98
creating interpreter 143
data formats of relocatable

assembly-language code
146

defined 50
directory 57-58

format 78-92
relocatable 120

or absolute 143
reading 91-92

empty 65
entry (entries) 78,85-89

inactive 86,89
sapling 89
seedling 89
subdirectory 89
tree 89

information 62-64
input/output 67
interpreter, creating an 143
level, system 66
management calls 5

Index 151

maximum capacity of a 94
name(s) 58-59,60

illegal 59
legal 59
syntax 59

open 52-53,63
operations on 68
organization 76-99

code [132]
sapling 93,95
seedling 93,95
SOS 56-62
sparse 63,94,97-98
standard 57-58

locating a byte in 98-99
storage formats of 92-99

structure
common 3
hierarchical 8
of a block 50-51
of a character 50-51
of a sapling 96
of a seedling 95
of a tree 96

subdirectory 57,78
system

relationship to device
system 57

root of 59
SOS 55-62
tree 61

top-level 57
tree 94,96-97

growing a 92-95
type 68
volume directory 77

file count 82,85
file name 60,63,80,83,87
file’type 64,87,91, [4], [13], [18]
FIND_SEG 26,30,121,122,

[77-79]
flexible disk 42,77,93, [109]

floppy disk See flexible disk
flow of control 27
FLUSH 66,72, [37], [41-42]
FNFERR [54]
form

bank-switched 13
current-bank-switched 13
of a SOS call 148,160

format(s)
absolute or relocatable 143
date and time 90
directory file 78
of attribute table [137]
of directory files 78
of information on a volume 77
of name parameter 159
of relocatable assembly­

language code files, data 146
relocatable 120
volume 77

free memory 23
data in 30
obtaining 121-124
segment allocated from 29

free blocks [23]
.FUNG [136], [139]
FUNCTION 145
future versions

compatibility with 18
of SOS 91,92,93

G
general purpose communications

(.RS232) [111]
GET_ANALOG 113,115,

[99-101]
GET DEV NUM 43,44,45,47,

[65]
GET_EOF 65, 66, 68, 73, [49]
GET_FENCE 110,114, [93]
GET_FILE_INFO 63,65,68,70,

152, [17-21]

152 SOS Reference Manual

GET_LEVEL 66, 69, 73, [53]
GET_MARK 66, 68, 72, [45]
GET_PREFIX 70, [27]
GET_SEG_INFO 26, [83-84]
GET_SEG_NUM 26, [85]
GET_TIME 90,112,115, [97-98]
.GRAFIX [110]
graphics 16, [110]

area 16
device drivers 16

growing a tree file 92

H
hand symbol xv
handler

event 5,125
interrupt 5

handling an event 106,107
hardware 8,10

independence 2
interrupt 105

header(s) 43,119
directory 78,79-82
subdirectory 82-85,89
volume directory 79,80,89

header_pointer 89
heads 77
hexadecimal (hex) xviii

digit 12
numbers xviii

hierarchical file structure 8
hierarchical tree structure 56, 76
high-order nibble [117]
highest bank 11

pair 15
highest switchable bank 15,18
highest-numbered bank 23
housekeeping functions 3

I
I/O

block 51
buffer 50,127
character 51
device-independent 67
ERROR [129]

implementation versus interface
76
warning 99

INCOMPATIBLE INTERPRETER
[129]

increment loop 124
one-bank example of 124

incrementing a pointer 36-37
index block(s) 93,94,95

master 94
maximum 94
sub- 94,96

index block 99
indexed mode, zero-page 29
indexing 15

addresses 15
indirect

addressing 10
enhanced 10,13-16, 27,30,

31-32
normal 14

operation, normal 31
pointer(s) 154,156,157

with an X-byte between $80
and $8F 158

with an X-byte of $00 157
indirect-X addressing 13
indirect-Y addressing 13
input(s)

analog 113
device 40
parameters [116]

input/output, file 67

Index 153

n
n

n
n
n
II
n
ii
R
H

interface versus implementation
76
warning 99

interface, SOS 76
intermediate form, bank-switched

addresses as 32
.INTERP [139]
interpreter(s) 5,16,118-125,145,

[132]
and modules 144
BASIC 145
code 10

executing 10
command [103]
environment 18-19
files, creating 143
language 118
maximum size of 18
memory

placement 18
requirements of 146

Pascal 145
return to 29
sample(s) 125-142

listing, complete 131-142
stand-alone 118
structure of 119-121
table within 29,30

INTERPRETER FILE NOT
FOUND [129]

interpreter-relative relocation
table [139]

interpreter’s
stack 19,110
zero page 19

interrupt(s) 5,104-115
conflicts between 104
handler 5,22,104
IRQ 22

and NMI 20
ranked in priority 104
summary of 112

invalid
address 13
jumps 29
regions 15,16

INVALID DRIVER FILE [129]
io buffer [31]
lO’ERR [72]
IRQ interrupts 20,22
is_newline 67,68, [33]

J MP 27-28, [139]
joymode [99]
joy status [100]
joystick [99]
JSn-B [100]
JSn-Sw [100]
JSn-X [100]
JSn-Y [100]
JSR 27-28
jumps 29

inside module 29
invalid 29
valid 29

K
KERNEL FILE NOT FOUND

[130]
key pointer 87,92
keyboard 40

labels xix, 120
local 127

language interpreter 118
largest possible file 94
last mod date and time 64,88,

89-90, [14], [19]
field 89-90

LDA 31, [139]

154 SOS Reference Manual

leaving ExerSOS [119]
legal device names 42
legal file names 59
length 152, [3], [11], [17], [25],

[30], [67], [116]
letters 42,56
level 66, [51], [53]
level, system file 66
limit 23,122, [75], [78], [83]
LIMIT 122
line-termination character 67
linked list 78
linker information [133]
linking

assembly-language modules
145

dynamic loading during 145
lists

required parameter 129,
150-152

optional parameter 152-154
loading

dynamic, during linking 145
assembly-language modules

145
routine [134]

loading_address 120,121
locating a byte in a standard

file 98
logical

block 77
device 53

byte position 98
device(s) 40

accessing a 41
multiple 54

structures 76
logical/physical device

correspondence 54
loop, increment 124
low-order nibble [117]
LVLERR [56]

M
machine

abstract 2
storing the state of the 110

macro, SOS 126
Makelnterp [121-122]
management calls

device 5
file 5
memory 5
utility 5

manager, resource 2-3
manual movement of EOF and

mark 66
manuf id 45, [70]
manufacturer 45
mark 51,53,64-65,68,97,98,

[45]
movement of, automatic 65
movement of, manual 65-66

marker, current position 51
master index block 94,96, 97
maximum

number of access paths 53
capacity of a file 94
number of index blocks 94
size of an interpreter 18

MCTOVFL [127]
media, removable 53,54
medium 42,53
MEM2SML [127]
memory 6-7,23

access techniques 27-38
addressing, bank-switched

10-13
allocation 25,121
bookkeeper 7
call(s) 25-27

errors 160
conflict 121

avoiding 121

Index 155

management 7
calls 5

obtaining free 121-124
placement

interpreter 18
module 144
SOS device driver 21
SOS Kernel 20

S-bank 19
segment 7
size, maximum 6,10
unswitched 28

messages, error [123-130]
minversion 81,84,88
mode(s)

absolute addressing 29
addressing 10-16
enhanced addressing 8
newline information 67
zero-page addressing 29

indexed 29
modification date and time 68
module(s) 5, [132]

absolute 143
addressing 27-29
assembly-language 19,118,

143-146
linking 145

BASIC invokable 145
creating 146
driver 41
execution, bank-switching

for 30
formats 146
loader [134]
Pascal 145
p rog ram o r data access by 145
relocatable 143,146, [132]

multiple
access paths 52
logical devices 54
volumes 54

N
name(s) 60,68

device 60
file 58-59,60
local 59
paramete r 159-160
volume 55-56,60

namejength 80,83,87
naming conventions 76
newpathname [9]
NEWLINE 67, 68,69, 71, [33-34]
newline

character 67
mode 67

newline_char 67,68, [33]
newline-mode information 67
nibble

high-order [117]
low-order [117]

NMI 114
interrupts 20

NMIHANG [127]
NORESC [72]
notation xviii

and symbols xviii
bank-switched address 15,

23
extended address 15
numeric xviii
segment address 23-27

NOTBLKDEV [56]
NOTOPEN [72]
NOTSOS [55]
NOWRITE [72]
null characters (ASCII $00) 97
number(s)

decimal xix
device 44
hexadecimal xiv
reference 52
slot 44

changing 46

156 SOS Reference Manual

unit 44
version 45

numeric notation xviii, xix

o
OPEN 52, 53, 68, 69, 71, [29-32]

call, example 128
operating system 2-3

defined 2
operations

asynchronous 5
normal indirect 31
on devices 45-46
on files 68
sequential read and write 50

optheader 120
opt_header length 120
option list 152, [3], [11], [17],

[29] ,’[67]
optional parameter list 152-154,

[x]
ORA 31
order of event queue 109
organization, code file [132]
OUTOFMEM [56]
output device 40
overview of the Apple 111 3-8
OVRERR [54]

P
page(s) 23, [31], [78], [81], [83]

part of segment address 25
parameter(s)

format of a name 159
input [116]
list,

optional 152-154, [x]
required 129,150-152, [x]

name 159-160
passing 145
pointer 145

parent entry length 85
parent_entry_number 85
parent pointer 85
parmcount [xi]
parmlist 149
Pascal 118,143, [132]

and BASIC modules 145
assembler 145, [134]
interpreter 145
prefix 62
program 145
versus SOS prefixes 62

path(s)
access 52

information 64-66
multiple 52
maximum number of 56

pathname [3], [7], [9], [11], [17],
[25], [29]

pathname 52,59-61
full 62
partial 61-62
syntax 60
valid 61

PERFORM 145
period 42,56
peripheral device 8,104
physical device 40, 54

correspondence with logical
devices 54

PNFERR [54]
point, decimal xix
pointer(s) 31,69,152

address extension 154-159
byte order of 79
comparing two 37
direct 154,155-156

to current 156
toX-bank 155

extended 123
fields 79
incrementing a 36-37

Index 157

indirect 154,156-159
manipulation 36-38
parameters 145
preceding-block 78
self-relative [136], [138]
three-byte 98

POSNERR [55]
prefix(es) 60,61-62

Pascal 62
restrictions on 62
SOS 62

versus Pascal 62
.PRINTER [111]
printers 40
priority of zero 108
priority-queue scheme 108
.PRIVATE [138]
.PROC [136], [139]
procedure(s) [135], [136]

attribute table [136]
code [136]
dictionary [135]

entries [136]
PROCEDURE NUMBER [138]
procedure-relative relocation

table [139]
processing an event 106
Processor, Apple III xvii
Product Support Department 45
program

execution, restrictions on 14
exiting from 66

programming
assembly-language xiii
restrictions, circumvention of

SOS 3
psuedo-opcode(s) [136]

.FUNC [136]

.PRIVATE [138]

.PROC [136]

.PUBLIC [138]
.PUBLIC [138]

Q
queuing an event 106

R
range, X-byte 15
READ 67, 68, 71, [35-36]
read and write operations,

sequential 50
read-enable bit [12], [18]
reading a directory file 91
ref num 52,64,67, [2], [29], [33],

[35], [37], [39], [49]
[41], [43], [45], [47]

references, relocation [138]
regions

invalid 15,16
risky 15,16

release memory 25
RELEASE_SEG 27, [87]
relocation 146

constant [138]
information 145
references [138]
table(s) [138]
base-relative [138]
interpreter-relative [139]
procedure-relative [139]
segment-relative [139]

RELOCSEG NUMBER [138]
RENAME 69,90, [9-10]
reqaccess [30]
request count [35], [37]
REQUEST_SEG 25,121, [75-76]

call 30
required parameter list 129,

150-152, [x]
example 129

resource manager 2-3
defined 2

resources 112-114

158 SOS Reference Manual

restrictions
addressing 15
bank-switching 28
on program execution 14

result 69,151
return to interpreter 29
risky regions 15,16

addresses 32
avoiding 37
warning 32

ROM ERROR: PLEASE NOTIFY
YOUR DEALER [130]

root of file system 59
.RS232 [111]

s
S-bank 11,23,28

address 12,38
in segment notation 25

locations, direct pointers to 155
memory 19

sample programs, examples xiv
sapling file 93,95

entry 89
structure of a 96

SBC 31
scheme, priority-queue 108
SOP 43
screen 40
search_mode [77]
sectors 77
seedling file 93,95

entry 89
structure of a 95

segaddress [85]
segjd [75], [78], [83]
seg num [76], [78], [81], [83],

[85], [87]
segment 23-24

address 24,38
bank part of 25
conversion 33-35

notation 23-27
page part of 25

allocated from free memory 29
dictionary [132], [134]
memory 7
of memory, allocating a 121
to bank-switched address

conversion 33
to extended address conversion

33
segment-relative relocation

table [139]
SEGNOTFND [88]
SEGRODN [88]
SEGTBLFULL [88]
sequential

access 51
devices 7

read and write operations 50
serial printer (.PRINTER) [111]
SET_EOF 66, 68, 72-73, [47-48]
SET_FENCE 107,110,114, [91]
SET_FILE_INFO 63,68,70,88,

90,152, [11-16]
SET_LEVEL 66,73, [51]
SET_MARK 66, 68, 72, [43-44]
SET_PREFIX 70, [25-26]
SET_TIME 90,112,115, [95-96]
slash (/) 56,60
slot number 44

change 46
of zero 44

slot num 44, [68]
software, common foundation

for 2,3
Sophisticated Operating System

See SOS
SOS xvii, 3, 5-6,16,104

1.1 xix, [106]
1.2 18,77,81,82,84,85,88,92,

93, 95, 99,105
1.3 xix, [106]

o Index 159

n

■
n
n
■
ii
■
■
n
H

■
n
H
n
n
n

bank 11
call(s) 8

block [103]
form error 160

reporting 160-161
form of 148-154,160
types of 148

device
driver

environment 20-21
memory placement 21

system 43
disk request 55
errors

fatal [124], [126]
general [124]
non-fatal [124]

file system 56,58
future versions of 91,92,93
implementation 76
interface 76
Kernel 19

environment 19-20
memory placement 20

macro 126
for SOS call block 126

prefix(es) 62
versus Pascal 62

programming restrictions,
circumvention of 3

specifications [105-111]
support for 76
system 104
versions xix, [106]

SOS.DRIVER 6,41
SOS.INTERP 118
SOS.KERNEL 6,41
sparse file(s) 63,94,97-98

block allocation for 98
copying 98

special symbols xv
STA 31

stack 17,20
interpreter’s 145
overflow [127]
pages 19

stand-alone interpreter 118
standard device drivers [109-111]
standard file(s) 57-58

locating a byte in 98-99
storage formats of 92-99

state of the machine, storing
the 110

status request
$00, block device [60]
$01, character device [60]
$02, character device [61]

statuscode [59]
status list [60]
STKOVFL [127]
stop symbol xv
storage formats

directory headers 76
entries 76
of standard files 92-99

storage type 64,80,83,87, 89,
92, 95" 96, 97, [5], [19]

string buffer [117], [118]
structure(s)

hierarchical tree 56,76
logical 76
of a sapling file 96
of a seedling file 95
of a tree file 96
of an interpreter 119-121
of block files 50-51
of character files 50-51

subjype 44,45, [69]
subdirectory (subdirectories) 8

file(s) 57,78
entry 89

header 82,83,89
subindex block 94,96
subroutine addressing 27-29

summary
of address storage 38
of interrupts and events 112

switchable bank 11
highest 15,18

symbol (s)
eye xix
hand xix
stop xix
v1.2 xix

syntax
device name 42
file name 59
pathname 60
volume name 56

System Configuration Program
(SCP) 41,46

system
clock 112
configuration time 104
file level 66
operating 2-3
status during event handling 111

table
procedure attribute [136]
within interpreter 29,30
Technical Support Department
146

TERMINATE 114,115,126,131,
[xi], [103]
call, coding 131
closing files before [103]

termination character 67, [61],
[64]

three-byte
address 13
pointer 98

time
date and

creation 64,81,84,88,89-90
format 90
last mod 64,88,89-90, [14],

[1’9]
time pointer [95], [97]
time-dependent code 104
timing loop 19,104
TOO MANY BLOCK DEVICES

[130]
TOO MANY DEVICES [130]
TOOLONG [128]
top-level files 57
total blocks 45,82, [23], [70]
tracks 77
transfer control 28
transfercount [36]
tree file 94,96-97

entry 89
growing a 92-95
structure of a 96

tree structure, hierarchical 56
tree, file system 61
TYPER R [55]

u
unit number 44
unit num 44, [68]
unsupported storage type

(TYPERR) [55]
utilities disk 41
utility

call(s) 114
errors 160, [126]
management 5

V
v1.2 symbol xix

and other versions xix

valid
jumps 29
pathnames 61

value 69,151
value/result parameter 152
VCBERR [128]
version 81,84,88

number 45
version num 45, [70]
VNFERR [54]
vol name 60, [23]
VOLUME 70, [23-24]
volume(s) 53-54,76

bit map 77,93
blocks on a 77
directory 54,57,78,93

file 77
header 79,80,89

formats 77
multiple 54
name(s) 42,55-56,60

advantages of 56
syntax 56

switchir^g 54-55
volume/device correspondence

54

warning
address conversion 123
interface versus implementation

99
on accessing zero page and

stack 17
on pointer conversions 155
on sample interpreter 125
pointer

direct 156
indirect 158,159

risky regions 32
termination 114
unallocated memory 121

.WORD [139]
words [133]
WRITE 68, 71,90, [37-38]
write-enable bit [12], [18]

X
X register 14
X-bank, direct pointers to 155
X-byte 14,15,31,145

between $80 and $8F, indirect
pointers with an 158

format 14
of $00, indirect pointers with

an 157
of$8F 16
range 15

X-page 145

Y
Y-register 15,32

zero
interpreter’s 19
page 15,17,20,29

and stack 17,20
warning on accessing 17

conflicts with 16
priority of 108

zero-page addressing mode 29
zero-page indexed addressing

mode 29

Special Symbols and Numbers
&V1.2 81,82,84
$ xviii, xix
$0 16 >
$8F 16
6502 xvii

instruction set 8

n
n
n
n
n
n
n
n
n

n
n
n
n
n
H
n
n
n
n
n

n
n
n

SOS Reference Manual
Reader Response Card

Apple is interested in your response to the SOS Reference Manual. Please fill out this card
and mail it back to us. Then if we revise the manual, we can improve its usefulness to you.

1. How much programming experience have you had?
 none little moderate extensive

2. As a programmer, what languages are you using?
 assembly high-level

3. Is there any part of the SOS Reference Manual that you think is inadequately ex­
plained? If so, please specify.

4. Do you have any suggestions that will improve the quality and usefulness of this
manual?

If you have any further comments, please send them to us in a separate letter at the address
on this card. Did you find any errors in the manual? If so, please attach annotated copies
of the manual pages containing errors. Thank you!

Name

Company/Title

St reet

C i ty/State/Z i p

A
ttn: Vendor Technical Support

(S
O

S R
eference)

m

oo
m

o
u
m
co
CD
m
m

u
03

O

q

<t
trf

i(i
«f

Bi
irr

trr
«i

[rc
rra

«c
r

Tuck end flap
inside back cover
when using manual.

apple computer
20525 Mariani Avenue

Cupertino, California 95014
(408) 996-1010
TLX 171-576

030-0442-B

